Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T19:28:39.539Z Has data issue: false hasContentIssue false

Effect of urea fertilization on biomass yield, chemical composition, in vitro rumen digestibility and fermentation characteristics of straw of highland barley planted in Tibet

Published online by Cambridge University Press:  20 August 2015

J. H. CUI
Affiliation:
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China
H. J. YANG*
Affiliation:
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
C. Q. YU
Affiliation:
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 110000, People's Republic of China
S. BAI
Affiliation:
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
T. T. WU
Affiliation:
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
S. S. SONG
Affiliation:
College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China
W. SUN
Affiliation:
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 110000, People's Republic of China
X. M. SHAO*
Affiliation:
Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
L. S. JIANG
Affiliation:
Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, People's Republic of China
*
*To whom all correspondence should be addressed. Emails: [email protected], [email protected]
*To whom all correspondence should be addressed. Emails: [email protected], [email protected]

Summary

A completely randomized experiment for planting highland barley in 36 field plots of the Lhasa Agricultural Experiment Station was applied to investigate the effect of urea nitrogen (N) fertilization levels of 0 (control), 156, 258, 363, 465 and 570 kg/ha on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of highland barley straw (HBS). Each urea application was divided into three portions of 0.4, 0.3 and 0.3 and sequentially fertilized at seeding (growth stage (GS) 0), stem elongation (GS 32) and heading (GS 49), respectively. The maturity stage lasted 5–13 days longer in response to the urea N fertilization compared with the control. After removing grains, HBS biomass was harvested at maturity. The biomass yields of leaf, stem, straw and grain were increased quadratically with increasing urea N fertilization, and HBS and grain yields peaked at the estimated urea N fertilization levels of 385 and 428 kg/ha, respectively. The increase of urea N fertilization increased the accumulation of crude protein, cellulose and lignin, and decreased the content of ash and hemicellulose in HBS, resulting in a decrease of the energy content available to be metabolized. After incubating HBS for 72 h with rumen fluids from lactating cows, the urea N fertilization decreased in vitro dry matter disappearance and cumulative gas production, and slightly altered fermentation end-gas composition. Urea N fertilization decreased microbial volatile fatty acid production, but did not alter the ratio of lipogenic acetate and butyrate to glucogenic propionate. In a brief, the current urea N fertilization strategy promoted the growth of the highland barley and increased biomass yield, protein and cellulose accumulation of HBS. A urea N fertilization level ⩽385 kg/ha could be sufficient for growth of highland barley in Tibet without a consequent nutritive reduction in ruminal digestion.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abaş, İ., Özpinar, H., Kutay, H. C., Kahraman, R. & Eseceli, H. (2005). Determination of the metabolizable energy (ME) and net energy lactation (NEL) contents of some feeds in the Marmara region by in vitro gas technique. Turkish Journal of Veterinary and Animal Sciences 29, 751757.Google Scholar
Abeledo, L. G., Calderini, D. F. & Slafer, G. A. (2003). Genetic improvement of yield responsiveness to nitrogen fertilization and its physiological determinants in barley. Euphytica 133, 291298.CrossRefGoogle Scholar
Adesodun, J. K., Mbagwu, J. S. C. & Oti, N. (2001). Structural stability and carbohydrate contents of an ultisol under different management systems. Soil and Tillage Research 60, 135142.CrossRefGoogle Scholar
Almodares, A., Jafarinia, M. & Hadi, M. R. (2009). The effects of nitrogen fertilizer on chemical compositions in corn and sweet sorghum. American-Eurasian Journal of Agricultural and Environmental Sciences 6, 441446.Google Scholar
Aoac (1999). Official Methods of Analysis, 16th edn, Washington, DC: Association of Analytical Chemists.Google Scholar
Aspila, K. I., Agemian, H. & Chau, A. S. Y. (1976). A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101, 187197.CrossRefGoogle ScholarPubMed
Baethgen, W. E., Christianson, C. B. & Lamothe, A. G. (1995). Nitrogen fertilizer effects on growth, grain yield, and yield components of malting barley. Field Crops Research 43, 8799.CrossRefGoogle Scholar
Bartholomew, P. W. & Chestnutt, D. M. B. (1977). The effect of a wide range of fertilizer nitrogen application rates and defoliation intervals on the dry-matter production, seasonal response to nitrogen, persistence and aspects of chemical composition of perennial ryegrass (Lolium perenne cv. S. 24). The Journal of Agricultural Science, Cambridge 88, 711721.CrossRefGoogle Scholar
Bartl, K., Gamarra, J., Gómez, C. A., Wettstein, H. R., Kreuzer, M. & Hess, H. D. (2009). Agronomic performance and nutritive value of common and alternative grass and legume species in the Peruvian highlands. Grass and Forage Science 64, 109121.CrossRefGoogle Scholar
Bélanger, G., Gastal, F. & Lemaire, G. (1992). Growth analysis of a tall fescue sward fertilized with different rates of nitrogen. Crop Science 32, 13711376.CrossRefGoogle Scholar
Beuvink, J. M. W. & Spoelstra, S. F. (1992). Interactions between substrate, fermentation end-products, buffering systems and gas production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Applied Microbiology and Biotechnology 37, 505509.CrossRefGoogle Scholar
Bishop, R. F. & MacEachern, C. R. (1971). Response of spring wheat and barley to nitrogen, phosphorus and potassium. Canadian Journal of Soil Science 51, 111.CrossRefGoogle Scholar
Blaser, R. E. (1964). Symposium on forage utilization: effects of fertility levels and stage of maturity on forage nutritive value. Journal of Animal Science 23, 246253.CrossRefGoogle Scholar
Bremner, J. M. & Mulvaney, C. S. (1982). Nitrogen – total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (Ed. Page, A. L.), pp. 595624. Madison, WI: American Society of Agronomy.Google Scholar
Campbell, C. A. & Davidson, H. R. (1979). Effect of temperature, nitrogen fertilization and moisture stress on yield, yield components, protein content and moisture use efficiency of Manitou spring wheat. Canadian Journal of Plant Science 59, 963974.CrossRefGoogle Scholar
Cantero-Martínez, C., Angas, P. & Lampurlanés, J. (2003). Growth, yield and water productivity of barley (Hordeum vulgare L.) affected by tillage and N fertilization in Mediterranean semiarid, rainfed conditions of Spain. Field Crops Research 84, 341357.CrossRefGoogle Scholar
Chanthakhoun, V., Wanapat, M. & Berg, J. (2012). Level of crude protein in concentrate supplements influenced rumen characteristics, microbial protein synthesis and digestibility in swamp buffaloes (Bubalus bubalis). Livestock Science 144, 197204.CrossRefGoogle Scholar
Chuan, L., He, P., Pampolino, M. F., Johnston, A. M., Jin, J., Xu, X., Zhao, S., Qiu, S. & Zhou, W. (2013). Establishing a scientific basis for fertilizer recommendations for wheat in China: yield response and agronomic efficiency. Field Crops Research 140, 18.CrossRefGoogle Scholar
Close, W. H. & Menke, K. H. (1980). Selected Topics in Animal Nutrition: a Manual Prepared for the 3rd Hohenheim Course on Animal Nutrition in the Tropics and Semi-Tropics. Germany: Hohenheim University.Google Scholar
Collins, M., Brinkman, M. A. & Salman, A. A. (1990). Forage yield and quality of oat cultivars with increasing rates of nitrogen fertilization. Agronomy Journal 82, 724728.CrossRefGoogle Scholar
Da Silva, P. R. F., Strieder, M. L., da Silva Coser, R. P., Rambo, L., Sangoi, L., Argenta, G., Forsthofer, E. L. & da Silva, A. A. (2005). Grain yield and kernel crude protein content increases of maize hybrids with late nitrogen side-dressing. Scientia Agricola 62, 487492.CrossRefGoogle Scholar
Davies, K. L., McKinnon, J. J. & Mutsvangwa, T. (2013). Effects of dietary ruminally degradable starch and ruminally degradable protein levels on urea recycling, microbial protein production, nitrogen balance, and duodenal nutrient flow in beef heifers fed low crude protein diets. Canadian Journal of Animal Science 93, 123136.CrossRefGoogle Scholar
De Giorgio, D., Lestingi, A., Bovera, F. & Convertini, G. (2008). Bioactivators and nitrogen fertilization applied to durum wheat: effects on the chemical composition and in vitro digestibility of straw. Options Méditerranéennes, Series A 79, 443447.Google Scholar
Duan, A. M. & Wu, G. X. (2005). Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dynamics 24, 793807.CrossRefGoogle Scholar
France, J. & Dijkstra, J. (2005). Volatile fatty acid production. In Quantitative Aspects of Ruminant Digestion and Metabolism, 2nd edn (Eds Dijkstra, J., Forbes, J. M. & France, J.), pp. 157175. Wallingford, UK: CAB International.CrossRefGoogle Scholar
France, J., Dijkstra, J., Dhanoa, M. S., Lopez, S. & Bannink, A. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition 83, 143150.CrossRefGoogle ScholarPubMed
Gallagher, M. E., Hockaday, W. C., Masiello, C. A., Snapp, S., McSwiney, C. P., & Baldock, J. A. (2011). Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture. Environmental Science and Technology 45, 20132020.CrossRefGoogle ScholarPubMed
García-Martínez, R., Ranilla, M. J., Tejido, M. L. & Carro, M. D. (2005). Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage: concentrate ratio. British Journal of Nutrition 94, 7177.CrossRefGoogle ScholarPubMed
Gerrish, J. R., Peterson, P. R., Roberts, C. A. & Brown, J. R. (1994). Nitrogen fertilization of stockpiled tall fescue in the Midwestern USA. Journal of Production Agriculture 7, 98104.CrossRefGoogle Scholar
Hansen, P. M., Jørgensen, J. R. & Thomsen, A. (2002). Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. The Journal of Agricultural Science, Cambridge 139, 307318.CrossRefGoogle Scholar
He, S. R., Zhang, D. G., & Tang, L. (2009). Optimal NPK fertilization and its effect on naked barley yield in sub-highland region. Journal of Yunnan Agricultural University 24, 265269.Google Scholar
Hu, D. & Yang, Y. H. (2011). Effects of different application rates of nitrogen on photosynthetic pigment, biomass and yield of winter highland barley seedlings. Journal of Anhui Agricultural Sciences 24, 1456114563.Google Scholar
John, A., Barnett, G. & Reid, R. L. (1957). Studies on the production of volatile fatty acids from grass by rumen liquor in an artificial rumen: I. The volatile acid production from fresh grass. The Journal of Agricultural Science, Cambridge 48, 315321.CrossRefGoogle Scholar
Johnson, K. A. & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science 73, 24832492.CrossRefGoogle ScholarPubMed
Jones, D. I. H., Ap Griffith, G. & Walters, R. J. K. (1965). The effect of nitrogen fertilizers on the water-soluble carbohydrate content of grasses. The Journal of Agricultural Science, Cambridge 64, 323328.CrossRefGoogle Scholar
Jouany, J. P. (2006). Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Animal Reproduction Science 96, 250264.CrossRefGoogle ScholarPubMed
Jung, H. G. & Allen, M. S. (1995). Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. Journal of Animal Science 73, 27742790.CrossRefGoogle ScholarPubMed
Keating, T. & O'Kiely, P. (2000). Comparison of old permanent grassland, Lolium perenne and Lolium multiflorum swards grown for silage: 3. Effects of varying fertiliser nitrogen application rate. Irish Journal of Agricultural and Food Research 39, 3553.Google Scholar
Khorasani, G. R., Jedel, P. E., Helm, J. H. & Kennelly, J. J. (1997). Influence of stage of maturity on yield components and chemical composition of cereal grain silages. Canadian Journal of Animal Science 77, 259267.CrossRefGoogle Scholar
Leber, D., Holawe, F. & Häusler, H. (1995). Climatic classification of the Tibet Autonomous Region using multivariate statistical methods. GeoJournal 37, 451473.CrossRefGoogle Scholar
Lemus, R., Brummer, E. C., Burras, C. L., Moore, K. J., Barker, M. F. & Molstad, N. E. (2008). Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass and Bioenergy 32, 11871194.CrossRefGoogle Scholar
Li, P. (2010). Principal component analysis of spring barley yield and its component factors in Linzhi of Tibet. Southwest China Journal of Agricultural Sciences 23, 2629.Google Scholar
Liu, Y., Bao, Q., Duan, A., Qian, Z. A. & Wu, G. (2007). Recent progress in the impact of the Tibetan Plateau on climate in China. Advances in Atmospheric Sciences 24, 10601076.CrossRefGoogle Scholar
Liu, G., Zhaxi, N., Zhaxi, N. & Song, G. (2013). The study on barley production under different nitrogen levels. Tibet Agricultural Science and Technology 35, 1719.Google Scholar
Long, R. J., Zhang, D. G., Wang, X., Hu, Z. Z. & Dong, S. K. (1999). Effect of strategic feed supplementation on productive and reproductive performance in yak cows. Preventive Veterinary Medicine 38, 195206.CrossRefGoogle ScholarPubMed
Makkar, H. P. S. & Becker, K. (1999). Purine quantification in digesta from ruminants by spectrophotometric and HPLC methods. British Journal of Nutrition 81, 107112.CrossRefGoogle ScholarPubMed
Malhi, S. S., Grant, C. A., Johnston, A. M. & Gill, K. S. (2001). Nitrogen fertilization management for no-till cereal production in the Canadian Great Plains: a review. Soil and Tillage Research 60, 101122.CrossRefGoogle Scholar
Malhi, S. S., Foster, A. & Gill, K. S. (2003). Harvest time and N fertilization effects on forage yield and quality of quackgrass (Elytrigia repens L.) in northeastern Saskatchewan. Canadian Journal of Plant Science 83, 779784.CrossRefGoogle Scholar
Mathison, G. W., Okine, E. K., McAllister, T. A., Dong, Y., Galbraith, J. & Dmytruk, O. I. N. (1998). Reducing methane emissions from ruminant animals. Journal of Applied Animal Research 14, 128.CrossRefGoogle Scholar
McKenzie, R. H., Middleton, A. B. & Bremer, E. (2005). Fertilization, seeding date, and seeding rate for malting barley yield and quality in southern Alberta. Canadian Journal of Plant Science 85, 603614.CrossRefGoogle Scholar
Menke, K. H. & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 755.Google Scholar
Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D. & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, Cambridge 93, 217222.CrossRefGoogle Scholar
Miller, L. A., Moorby, J. M., Davies, D. R., Humphreys, M. O., Scollan, N. D., MacRae, J. C. & Theodorou, M. K. (2001). Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): milk production from late-lactation dairy cows. Grass and Forage Science 56, 383394.CrossRefGoogle Scholar
Nagaraja, T. G. & Titgemeyer, E. C. (2007). Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook 1, 2. Journal of Dairy Science Supplement, 90, E17E38.CrossRefGoogle Scholar
Nordheim-Viken, H. & Volden, H. (2009). Effect of maturity stage, nitrogen fertilization and seasonal variation on ruminal degradation characteristics of neutral detergent fibre in timothy (Phleum pratense L.). Animal Feed Science and Technology 149, 3059.CrossRefGoogle Scholar
Nori, H., Abdul Halim, R. & Ramlan, M. F. (2008). Effects of nitrogen fertilization management practice on the yield and straw nutritional quality of commercial rice varieties. Malaysian Journal of Mathematical Sciences 2, 6171.Google Scholar
Ørskov, E. R. (1975). Manipulation of rumen fermentation for maximum food utilization. World Review of Nutrition and Dietetics 22, 152182.CrossRefGoogle ScholarPubMed
Sar, C., Santoso, B., Zhou, X. G., Gamo, Y., Koyama, A., Kobayashi, T., Shiozaki, S. & Takahashi, J. (2002). Effects of β−1, 4 galacto-oligosaccharide (GOS) and Candida kefyr on nitrate-induced methemoglobinemia and methane emission in sheep. In Greenhouse Gases and Animal Agriculture (Eds Takahashi, J. & Young, B. A.), pp. 179184. Amsterdam: Elsevier.Google Scholar
Seker, E. (2002). The determination of the energy values of some ruminant feeds by using digestibility trial and gas test. Revue de Médecine Vétérinaire 153, 323330.Google Scholar
Takahashi, J. & Young, B. A. (1991). Prophylactic effect of L-cysteine on nitrate-induced alterations in respiratory exchange and metabolic rate in sheep. Animal Feed Science and Technology 35, 105113.CrossRefGoogle Scholar
Taylor, T. H. & Templeton, W. C. (1976). Stockpiling Kentucky bluegrass and tall fescue forage for winter pasturage. Agronomy Journal 68, 235239.CrossRefGoogle Scholar
Tigre, W., Worku, W. & Haile, W. (2014). Effects of nitrogen and phosphorus fertilizer levels on growth and development of barley (Hordeum vulgare L.) at Bore District, Southern Oromia, Ethiopia. American Journal of Life Sciences 2, 260266.CrossRefGoogle Scholar
Valk, H., Kappers, I. E. & Tamminga, S. (1996). In sacco degradation characteristics of organic matter, neutral detergent fibre and crude protein of fresh grass fertilized with different amounts of nitrogen. Animal Feed Science and Technology 63, 6387.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Verdouw, H., Van Echteld, C. J. A. & Dekkers, E. M. J. (1978). Ammonia determination based on indophenol formation with sodium salicylate. Water Research 12, 399402.CrossRefGoogle Scholar
Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37, 2938.CrossRefGoogle Scholar
Wang, S. J., Chen, J. B. & Qi, J. L. (2009). Study on the technology for highway construction and engineering practices in permafrost regions. Sciences in Cold and Arid Regions 1, 412422.Google Scholar
Waramit, N., Moore, K. J. & Heggenstaller, A. H. (2011). Composition of native warm-season grasses for bioenergy production in response to nitrogen fertilization rate and harvest date. Agronomy Journal 103, 655662.CrossRefGoogle Scholar
Wilman, D. & Wright, P. T. (1978). The proportions of cell content, nitrogen, nitrate-nitrogen and water-soluble carbohydrate in three grasses in the early stages of regrowth after defoliation with and without applied nitrogen. The Journal of Agricultural Science, Cambridge 91, 381394.CrossRefGoogle Scholar
Yang, Y. L. (2012). Effects of seeding rate and fertilizers dose on seed yield of Hordeum vulgare var. nudum. Hubei Agricultural Sciences 8, 15361539.Google Scholar
Yu, C., Zhang, Y., Claus, H., Zeng, R., Zhang, X. & Wang, J. (2012). Ecological and environmental issues faced by a developing Tibet. Environmental Science and Technology 46, 19791980.CrossRefGoogle ScholarPubMed
Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar
Zhang, D. F. & Yang, H. J. (2011). In vitro ruminal methanogenesis of a hay-rich substrate in response to different combination supplements of nitrocompounds; pyromellitic diimide and 2-bromoethanesulphonate. Animal Feed Science and Technology 163, 2032.CrossRefGoogle Scholar
Zinn, R. A. & Owens, F. N. (1986). A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science 66, 157166.CrossRefGoogle Scholar