Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T19:53:45.424Z Has data issue: false hasContentIssue false

Effect of urea fertilization on biomass yield, chemical composition, in vitro rumen digestibility and fermentation characteristics of forage oat straw in Tibet of China

Published online by Cambridge University Press:  18 March 2016

J. H. CUI
Affiliation:
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China
H. J. YANG*
Affiliation:
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
C. Q. YU
Affiliation:
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
S. BAI
Affiliation:
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
S. S. SONG
Affiliation:
College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China
T. T. WU
Affiliation:
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
W. SUN
Affiliation:
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
X. M. SHAO*
Affiliation:
Beijing Key Laboratory for Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
L. S. JIANG
Affiliation:
Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, People's Republic of China
*
*To whom all correspondence should be addressed. Email: [email protected] and [email protected]
*To whom all correspondence should be addressed. Email: [email protected] and [email protected]

Summary

The present study investigated the effects of different levels of urea nitrogen (N) fertilizer on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of forage oat straw (FOS) from oats (Avena sativa L. ‘Qinghai 444’) grown in the Tibet region of China. Fertilizer, applied at seeding (day 1), stem elongation (days 52–54) and heading (days 63–67), increased plant height and prolonged the maturity stage of the plant by 4–11 days compared with the non-fertilized control. Oat plants were harvested at maturity at the node 3–4 cm above ground, and then separated into grains and FOS. Both FOS and grain yields increased quadratically with increasing N fertilization, and their theoretical maximums occurred at the N fertilizing rates of 439 and 385 kg/ha, respectively. Increases in N fertilization did not affect the hemicellulose content of FOS, but substantially promoted the accumulation of crude protein, cellulose and lignin, resulting in a decrease in the energy content available for metabolism. A 72-h incubation of FOS with rumen fluids from lactating cows showed that increasing N resulted in FOS that showed a slower fermentation rate, decreased in vitro dry matter disappearance and lower cumulative gas production, but unchanged fermentation gas composition. Nitrogen fertilization increased the final pH in culture fluids and decreased the microbial volatile fatty acid (VFA) production. The molar proportions of acetate and propionate were not affected, but molar propionate proportion decreased linearly with increasing urea fertilization, and consequently, the ratio of lipogenic (e.g., acetate and butyrate)-to-glucogenic acids (propionate) tended to increase. In brief, increasing urea N fertilization promoted the growth of forage oats and increased the biomass yield as well as the crude protein and cellulose content of FOS. Considering the negative effect of increased lignin content on nutrient digestibility and total VFA production, the suggested range of urea N fertilization is 156–363 kg N/ha for forage oats planted in Tibet to retain the nutritive value of FOS in the rumen.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L. J., Harbers, L. H., Schalles, R. R., Owensby, C. E. & Smith, E. F. (1976). Range burning and fertilizing related to nutritive value of bluestem grass. Journal of Range Management 29, 306308.CrossRefGoogle Scholar
Anderson, P. V., Kerr, B. J., Weber, T. E., Ziemer, C. J. & Shurson, G. C. (2012). Determination and prediction of digestible and metabolizable energy from chemical analysis of corn coproducts fed to finishing pigs. Journal of Animal Science 90, 12421254.CrossRefGoogle ScholarPubMed
AOAC (1999). Official Methods of Analysis, 16th edn. Arlington, VA, USA: AOAC International.Google Scholar
Bartl, K., Gamarra, J., Gómez, C. A., Wettstein, H. R., Kreuzer, M. & Hess, H. D. (2009). Agronomic performance and nutritive value of common and alternative grass and legume species in the Peruvian highlands. Grass and Forage Science 64, 109121.CrossRefGoogle Scholar
Bélanger, G., Gastal, F. & Lemaire, G. (1992). Growth analysis of a tall fescue sward fertilized with different rates of nitrogen. Crop Science 32, 13711376.CrossRefGoogle Scholar
Brinkman, M. A. & Rho, Y. D. (1984). Response of three oat cultivars to N fertilizer. Crop Science 24, 973977.CrossRefGoogle Scholar
Cassab, G. I. (1998). Plant cell wall proteins. Annual Review of Plant Physiology and Plant Molecular Biology 49, 281309.CrossRefGoogle ScholarPubMed
Chanthakhoun, V., Wanapat, M. & Berg, J. (2012). Level of crude protein in concentrate supplements influenced rumen characteristics, microbial protein synthesis and digestibility in swamp buffaloes (Bubalus bubalis). Livestock Science 144, 197204.CrossRefGoogle Scholar
Cherney, J. H. & Marten, G. C. (1982). Small grain crop forage potential: I. biological and chemical determinants of quality, and yield. Crop Science 22, 227231.CrossRefGoogle Scholar
China Standard NY/T 34 (2004). Feeding Standard of Dairy Cattle (in Chinese). China Nongye Hang Ye Biaozhun/ Tuijian-34. Beijing, People's Republic of China: China Agriculture Publisher.Google Scholar
Close, W. H. & Menke, K. H. (1986). Selected Topics in Animal Nutrition: a Manual Prepared for the 3rd Hohenheim Course on Animal Nutrition in the Tropics and Semi-Tropics. Stuttgart, Germany: Hohenheim University.Google Scholar
Coblentz, W. K., Jokela, W. E. & Bertram, M. G. (2014). Cultivar, harvest date, and nitrogen fertilization affect production and quality of fall oat. Agronomy Journal 106, 20752086.CrossRefGoogle Scholar
Collins, M., Brinkman, M. A. & Salman, A. A. (1990). Forage yield and quality of oat cultivars with increasing rates of nitrogen fertilization. Agronomy Journal 82, 724728.CrossRefGoogle Scholar
Contreras-Govea, F. E. & Albrecht, K. A. (2006). Forage production and nutritive value of oat in autumn and early summer. Crop Science 46, 23822386.CrossRefGoogle Scholar
Daşci, M. & Comakli, B. (2011). Effects of fertilization on forage yield and quality in range sites with different topographic structure. Turkish Journal of Field Crops 16, 1522.Google Scholar
Duan, A. M. & Wu, G. X. (2005). Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dynamics 24, 793807.CrossRefGoogle Scholar
Fondevila, M., BarriosUrdaneta, A., Balcells, J. & Castrillo, C. (2002). Gas production from straw incubated in vitro with different levels of purified carbohydrates. Animal Feed Science and Technology 101, 115.CrossRefGoogle Scholar
France, J. & Dijkstra, J. (2005). Volatile fatty acid production. In Quantitative Aspects of Ruminant Digestion and Metabolism (Eds Dijkstra, J., Forbes, J. M. & France, J.), pp. 157175. Wallingford, UK: CABI.CrossRefGoogle Scholar
France, J., Dijkstra, J., Dhanoa, M. S., Lopez, S. & Bannink, A. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition 83, 143150.CrossRefGoogle ScholarPubMed
Fukushima, R. S. & Dehority, B. A. (2000). Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses. Journal of Animal Science 78, 31353143.CrossRefGoogle ScholarPubMed
Garcıa-Martınez, R., Ranilla, M. J., Tejido, M. L. & Carro, M. D. (2005). Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage: concentrate ratio. British Journal of Nutrition 94, 7177.CrossRefGoogle ScholarPubMed
Getachew, G., Robinson, P. H., DePeters, E. J. & Taylor, S. J. (2004). Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology 111, 5771.CrossRefGoogle Scholar
Givens, D. I., Davies, T. W. & Laverick, R. M. (2004). Effect of variety, nitrogen fertiliser and various agronomic factors on the nutritive value of husked and naked oats grain. Animal Feed Science and Technology 113, 169181.CrossRefGoogle Scholar
González Ronquillo, M., Fondevila, M., Barrios Urdaneta, A. & Newman, Y. (1998). In vitro gas production from buffel grass (Cenchrus ciliaris L.) fermentation in relation to the cutting interval, the level of nitrogen fertilisation and the season of growth. Animal Feed Science and Technology 72, 1932.CrossRefGoogle Scholar
Hogan, J. P. & Weston, R. H. (1969). The digestion of pasture plants by sheep. III. The digestion of forage oats varying in maturity and in the content of protein and soluble carbohydrate. Australian Journal of Agricultural Research 20, 347363.CrossRefGoogle Scholar
Islam, M. R., Garcia, S. C. & Horadagoda, A. (2012). Effects of residual nitrogen, nitrogen fertilizer, sowing date and harvest time on yield and nutritive value of forage rape. Animal Feed Science and Technology 177, 5264.CrossRefGoogle Scholar
Jouany, J. P. (2006). Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Animal Reproduction Science 96, 250264.CrossRefGoogle ScholarPubMed
Leber, D., Holawe, F. & Häusler, H. (1995). Climatic classification of the Tibet Autonomous Region using multivariate statistical methods. GeoJournal 37, 451472.CrossRefGoogle Scholar
Lemus, R., Brummer, E. C., Burras, C. L., Moore, K. J., Barker, M. F. & Molstad, N. E. (2008). Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass and Bioenergy 32, 11871194.CrossRefGoogle Scholar
Liu, X. & Chen, B. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20, 17291742.3.0.CO;2-Y>CrossRefGoogle Scholar
Liu, Y., Bao, Q., Duan, A., Qian, Z. A. & Wu, G. (2007). Recent progress in the impact of the Tibetan Plateau on climate in China. Advances in Atmospheric Sciences 24, 10601076.CrossRefGoogle Scholar
Long, R. J., Dong, S. K., Wei, X. H. & Pu, X. P. (2005). The effect of supplementary feeds on the bodyweight of yaks in cold season. Livestock Production Science 93, 197204.CrossRefGoogle Scholar
Lovett, D. K., Bortolozzo, A., Conaghan, P., O'Kiely, P. & O'Mara, F. P. (2004). In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass and Forage Science 59, 227232.CrossRefGoogle Scholar
Makkar, H. P. & Becker, K. (1999). Purine quantification in digesta from ruminants by spectrophotometric and HPLC methods. British Journal of Nutrition 81, 107112.CrossRefGoogle ScholarPubMed
Malhi, S. S., Foster, A. & Gill, K. S. (2003). Harvest time and N fertilization effects on forage yield and quality of quackgrass (Elytrigia repens L.) in northeastern Saskatchewan. Canadian Journal of Plant Science 83, 779784.CrossRefGoogle Scholar
Marshall, H. G., Kolb, F. L. & Roth, G. W. (1987). Effects of nitrogen fertilizer rate, seeding rate, and row spacing on semidwarf and conventional height spring oat. Crop Science 27, 572575.CrossRefGoogle Scholar
May, W. E., Mohr, R. M., Lafond, G. P., Johnston, A. M. & Stevenson, F. C. (2004). Effect of nitrogen, seeding date and cultivar on oat quality and yield in the eastern Canadian prairies. Canadian Journal of Plant Science 84, 10251036.CrossRefGoogle Scholar
Menke, K. H. & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 755.Google Scholar
Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D. & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro . Journal of Agricultural Science, Cambridge 93, 217222.CrossRefGoogle Scholar
Monteiro, A. L. G. (1996). Forragicultura no Paraná. Londrina, Brazil: CPAF.Google Scholar
Morris, H. D. & Gardner, F. P. (1958). The effect of nitrogen fertilization and duration of clipping period on forage and grain yields of oats, wheat, and rye. Agronomy Journal 50, 454457.CrossRefGoogle Scholar
Mould, F. L. & Ørskov, E. R. (1983). Manipulation of rumen fluid pH and its influence on cellulolysis in sacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate. Animal Feed Science and Technology 10, 114.CrossRefGoogle Scholar
Mould, F. L., Ørskov, E. R. & Mann, S. O. (1983). Associative effects of mixed feeds. I. effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Animal Teed Science and Technology 10, 1530.CrossRefGoogle Scholar
Nass, H. G., Kunelius, H. T. & Suzuki, M. (1975). Effects of nitrogen application on barley, oats and triticale grown as forage. Canadian Journal of Plant Science 55, 4953.CrossRefGoogle Scholar
NRC (1996). Nutrient Requirements for Beef Cattle, 7th edn. Washington, D.C.: National Academy Press.Google Scholar
Obara, Y., Dellow, D. W. & Nolan, J. V. (1991). The influence of energy-rich supplements on nitrogen kinetics in ruminants. In Physiological Aspects of Digestion and Metabolism in Ruminants: Proceedings of the Seventh International Symposium on Ruminant Physiology (Eds Tsuda, T., Sasaki, Y. & Kawashima, R.), pp. 515539. San Diego, CA, USA: Academic Press.CrossRefGoogle Scholar
Ohm, H. W. (1976). Response of 21 oat cultivars to nitrogen fertilization. Agronomy Journal 68, 773775.CrossRefGoogle Scholar
Ørskov, E. R. (1975). Manipulation of rumen fermentation for maximum food utilization. World Review of Nutrition & Dietetics 22, 152182.CrossRefGoogle ScholarPubMed
Redaelli, R., Scalfati, G., Ciccoritti, R., Cacciatori, P., De Stefanis, E. & Sgrulletta, D. (2014). Effects of genetic and agronomic factors on grain composition in oats. Cereal Research Communications 43, 144154.CrossRefGoogle Scholar
Restelatto, R., Pavinato, P. S., Sartor, L. R. & Paixão, S. J. (2014). Production and nutritional value of sorghum and black oat forages under nitrogen fertilization. Grass and Forage Science 69, 693704.CrossRefGoogle Scholar
Rezende, A. S. C., Freitas, G. P., Costa, M. L. L., Fonseca, M. G., Lage, J. & Leal, H. V. Jr (2012). Nutritional composition of white oat (Avena sativa L.) with different levels of dry matter for use in the diet of horses. In Forages and Grazing in Horse Nutrition (Eds Saastamoinen, M., Fradinho, M. J., Santos, A. S. & Miraglia, N.), pp. 275277. Forages and Grazing in Horse Nutrition vol. 132. Wageningen, NL: Wageningen Academic Publishers.CrossRefGoogle Scholar
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro . British Journal of Nutrition 32, 199208.CrossRefGoogle ScholarPubMed
Talbot, J. M. & Treseder, K. K. (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93, 345354.CrossRefGoogle ScholarPubMed
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Verdouw, H., Van Echteld, C. J. A. & Dekkers, E. M. J. (1978). Ammonia determination based on indophenol formation with sodium salicylate. Water Research 12, 399402.CrossRefGoogle Scholar
Wang, S., Wang, Y., Schnug, E., Haneklaus, S. & Fleckenstein, J. (2002). Effects of nitrogen and sulphur fertilization on oats yield, quality and digestibility and nitrogen and sulphur metabolism of sheep in the Inner Mongolia Steppes of China. Nutrient Cycling in Agroecosystems 62, 195202.CrossRefGoogle Scholar
Waramit, N., Moore, K. J. & Heggenstaller, A. H. (2011). Composition of native warm-season grasses for bioenergy production in response to nitrogen fertilization rate and harvest date. Agronomy Journal 103, 655662.CrossRefGoogle Scholar
Wolf, D. & Opitz von Boberfeld, W. (2003). Effects of nitrogen fertilization and date of utilization on the quality and yield of tall fescue in winter. Journal of Agronomy and Crop Science 189, 4753.CrossRefGoogle Scholar
Yang, H. J., Zhuang, H., Meng, X. K., Zhang, D. F. & Cao, B. H. (2014). Effect of melamine on in vitro rumen microbial growth, methane production and fermentation of Chinese wild rye hay and maize meal in binary mixtures. Journal of Agricultural Science, Cambridge 152, 686696.CrossRefGoogle Scholar
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar
Zhang, D. F. & Yang, H. J. (2011). In vitro ruminal methanogenesis of a hay-rich substrate in response to different combination supplements of nitrocompounds; pyromellitic diimide and 2-bromoethanesulphonate. Animal Feed Science and Technology 163, 2032.CrossRefGoogle Scholar
Zhao, B. P., Ren, P., Liu, J. H. & Zhao, M. L. (2013). Nitrogen accumulation, retranslocation and partitioning in oats (Avena L.) as affected by different water supply and nitrogen fertilization. Advanced Materials Research 610, 29632967.CrossRefGoogle Scholar
Zinn, R. A. & Owens, F. N. (1986). A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science 66, 157166.CrossRefGoogle Scholar