Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T06:34:09.286Z Has data issue: false hasContentIssue false

The effect of the increased dietary volatile fatty acids on the morphological and physiological development of lambs with particular reference to the rumen

Published online by Cambridge University Press:  27 March 2009

M. D. Rickard
Affiliation:
Department of parasitology, University of Queensland, St Lucia
J. H. Ternouth
Affiliation:
Department of Animal Husbaridry, University of Queensland, St Lucia

Extract

Acetic acid, propionic acid, and butyric acid were fed to lambs at a level of 4% of ration over the period of 3-8 weeks of age. The effects of this on weight gains and rumen development were measured.

Separate pathways are involved in the metabolism of C3 and C4 V.F.A. in the rumen wall, and the enzyme systems involved can adapt to high levels of each acid in the diet. The adaptation is longstanding.

The groups of lambs supplemented with propionic acid showed greater weight gains than the other groups.

Propionic acid in some way increases the efficiency of V.F.A. utilization by the animal, possibly by reducing the heat increment, and/or reducing loss of energy as ketone bodies in the urine.

At 9-12 weeks a higher efficiency of food utilization in the acetic acid group was observed.

The stimulatory effect of acetic and propionic acids on papilla numbers was observed at 8 weeks.

Some observations were made on histological sections of rumen papilla at 8, 12 and 16 weeks and their relationship to the diet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, D. G. & Blaxter, K. L. (1957a). Brit. J. Nutr. 11, 247.CrossRefGoogle Scholar
Armstrong, D. G. & Blaxter, K. L. (1957b). Brit. J. Nutr. 11, 413.CrossRefGoogle Scholar
Armstrong, D. G., Blaxter, K. L. & Graham, N. (1957). Brit. J. Nutr. 11, 392.CrossRefGoogle Scholar
Browlee, A. (1956). Brit. Vet. J. 112, 369.CrossRefGoogle Scholar
Carroll, E. J. & Hungate, R. E. (1954). Appl. Microbiol. 2, 205.CrossRefGoogle Scholar
Church, D. C, Jessup, D. L. & Bogart, R. (1962). Amer. J. Vet. Res. 23, 220.Google Scholar
Flatt, W. P., Warner, R. G. & Loosli, J. K. (1958). J. Dairy Sci. 41, 1593.CrossRefGoogle Scholar
Gilliland, R. L., Bush, L. J. & Friend, J. D. (1962). J. Dairy Sci. 45, 1211.CrossRefGoogle Scholar
Goetsch, G. D. & Pritchard, W. R. (1958). Amer. J. Vet. Res. 19, 637.Google Scholar
Martin, W. G., Ramsay, H. A., Matrone, G. & Wise, G. H. (1959). J. Dairy Sci. 42, 1377.CrossRefGoogle Scholar
Pennington, R. J. (1952). Biochem. J. 51, 251.CrossRefGoogle Scholar
Pennington, R. J. (1954). Biochem. J. 56, 410.CrossRefGoogle Scholar
Pennington, R. J. & Sutherland, T. M. (1956a). Biochem. J. 63, 618.CrossRefGoogle Scholar
Pennington, R. J. & Sutherland, T. M. (1956b). Biochem. J. 63, 353.CrossRefGoogle Scholar
Pennington, R. J. & Pfander, W. H. (1957). Biochem. J. 65, 109.CrossRefGoogle Scholar
Sander, E. G., Warner, R. G., Harrison, H. N.Loosli, J. K. (1959). J. Dairy Sci. 42, 1600.CrossRefGoogle Scholar
Sinclair, J. H. & Kuntel, H. O. (1959). Proc. Soc. Exp. Biol., N.Y., 102, 57.CrossRefGoogle Scholar
Stewart, W. E., Stewart, D. G. & Schultz, L. H. (1958). J. Anim. Sci. 17, 723.CrossRefGoogle Scholar
Sutton, J. D., McGilliard, A. D. & Jacobson, N. L. (1963). J. Dairy Sci. 46, 426.CrossRefGoogle Scholar
Tamate, H., Mcgilliard, A. D., Jacobson, N. L. & Getty, R. (1962). J. Dairy Sci. 45, 408.CrossRefGoogle Scholar
Warner, R. G., Berholdt, H. F., Grippin, C. G. & Loosli, J. K. (1953). J. Dairy Sci. 36, 599.Google Scholar
Wardrop, I. D. (1961). J. Agric. Sci. 57, 335.CrossRefGoogle Scholar
Wardrop, I. D. & Coombb, J. B. (1961). Aust. J. Agric. Res. 12, 661.CrossRefGoogle Scholar