Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T10:29:12.115Z Has data issue: false hasContentIssue false

The effect of sodium nitrate on the growth and nitrogen content of a lucerne and grass mixture

Published online by Cambridge University Press:  27 March 2009

H. G. Thornton
Affiliation:
(Department of Bacteriology, Rothamsted Experimental Station, Harpenden, Herts.)
Hugh Nicol
Affiliation:
(Department of Bacteriology, Rothamsted Experimental Station, Harpenden, Herts.)

Ix. summary and abstract

1. Inoculated lucerne was grown alone and in association with Italian rye grass, in pots of sand watered with food solution and given three different doses of sodium nitrate.

2. The dose of nitrate did not affect the dry weight or nitrogen content of lucerne when grown alone, save that the highest dose checked the root growth somewhat.

3. When lucerne and Italian rye grass were grown in association, the growth of the grass varied directly with the dose of nitrate applied, and the growth of the lucerne varied inversely to it. Checking of the lucerne growth was probably due to root competition with the grass.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1934

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Lipman, J. G.J. Agric. Sci. (1908–10), 3, 297.CrossRefGoogle Scholar
(2)Lipman, J. G.New Jersey State Agric. Exp. Sta. Bull. (1912), No. 253.Google Scholar
(3)Remy, Th. and Vasters, J.Landw. Jahrb. (1931), 73, 521.Google Scholar
(4)Thornton, H. G. Lucerne “Inoculation” and the factors affecting its success. Imp. Bureau Soil Sci. Tech. Comm. (1931), No. 20, London.Google Scholar
(5)Dorsey, H.J. Amer. Soc. Agron. (1929), 21, 679.CrossRefGoogle Scholar
(6)Lyon, T. L.Cornell Agric. Exp. Sta. Bull. (N.Y.) (1925), No. 447.Google Scholar
(7)Stallings, J. H.Soil Sci. (1926), 21, 253.CrossRefGoogle Scholar
(8)Joshi, N. V.Mem. Dept. Agric. India, Bact. Ser. (1920), 1, No. 9, p. 247.Google Scholar
(9)Virtanen, A. I.Über die Stickstoffernährung der Pflanzen. Ann. Acad. Sci. Fenn. Ser. A (1933), 36, No. 12 (German). Summary in Nature (1933), 131, 534.Google Scholar
(10)Virtanen, A. I.Undersøgelser over Bælgplantebakterierne og Bægplanteme. (Danish.) Beret. om Nordiske Jordbrugsforskeres Forenings, IV Kongres, Helsingfors, 1929: Nordisk Jordbrugsforskning. (København, 1929), 11, 782.Google Scholar
(11)Virtanen, A. I. and Von Hausen, S. The capability of grass plants to take advantage of nitrogen fixed by the nodule bacteria of leguminous plants. (Finnish, with English summary.) Contrib. Lab. Valio (Helsinki, 1930).Google Scholar
(12)Virtanen, A. I. and Von Hausen, S.Z. Pflanz. Dung. (1931), A, 21, 57.CrossRefGoogle Scholar
(13)Virtanen, A. I., Von Hausen, S. and Karström, H.Biochem. Z. (1933), 258, 106.Google Scholar
(14)Virtanen, A. I. and Saastamoinen, S. Über die Stickstoffbindung bei Erlen (Alnus). Acta Chem. Fennica (1933), B, 6 (German).Google Scholar
(15)Wartiovaara, U.Z. Pflanz. Düng. (1933), A, 31, 253.Google Scholar
(16)Nicol, Hugh. The derivation of the nitrogen of crop plants, with special reference to associated growth. Biol. Rev. (In the press: to appear in Oct. 1934.)CrossRefGoogle Scholar