Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T07:42:28.911Z Has data issue: false hasContentIssue false

The effect of changes in the intestinal flow of nucleic acids on allantoin excretion in the urine of Sheep

Published online by Cambridge University Press:  27 March 2009

Anna M. Antoniewicz
Affiliation:
Department of Animal Nutrition, Institute of Animal Production, Sarego 2, Krakow, Poland
W. W. Heinemann
Affiliation:
Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, U.S.A.
E. M. Hanks
Affiliation:
Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, U.S.A.

Summary

Three ewes were intraduodenally infused with yeast RNA (15, 20 and 30 g/day) or control solutions for 3 days and the net changes in urinary allantoin excretion determined. Four mature wethers fitted with a re-entrant cannula in the proximal duodenum were fed two levels (0·66 and 1 × maintenance) of pelleted lucerne hay. Allantoin excretion was compared with total nucleic acid (NA) flow in the small intestine.

The average proportion of the recovery of the infused RNA-N dose as urinary allantoin–N amounted to 0·119 ± 0·0046. The values of the net increase of allantoin-N (Y, g/day) above control levels were highly significantly correlated (n = 12, r = 0·98) with amounts of RNA-N infused (X, g/day): y = 0·1185 (± 0·0086) X–0·004 (P < 0·001). The average ratio of urinary allantoin-N to NA-N passing the duodenum during 24 h was 0·173. A difference between the two conversion factors is discussed in relation to endogenous allantoin excretion and purine base composition of yeast and bacterial RNA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoniewicz, A. M. (1971). Oznaczanie kwasów nukleinowyoh w treści żwacza. Ada Agraria et Silvestria XI, 315.Google Scholar
Antoniewicz, A. M., Heinemann, W. W. <Hanks, E. M. (1979). Factors affecting allantoin excretion in sheep urine. Annales de Recherches Vétérinaires 10, 300302.Google ScholarPubMed
Association Of Official Analytical Chemists (1975). Official Methods of Analysis, 12th ed.Washington, D.C.: A.O.A.C.Google Scholar
Barnard, E. A. (1969). Biological function of pancreatic ribonuclease. Nature, London 221, 340344.CrossRefGoogle ScholarPubMed
Belozerski, A. N. & Spirin, A. S. (1960). Chemistry of nucleic acids of microorganisms. In The Nucleic Acids, in (ed. Chargaff, E. and Davidson, J. N.), pp. 147—185. New York, London: Academic Press.Google Scholar
Coelho, da Silva J. F., Seeley, R. C, Beever, D. E., Prescott, J. H. D. & Armstrong, D. G. (1972). The effect in sheep of physical form and stage of growth on the sites of digestion of a dried grass. 2. Sites of nitrogen digestion. British Journal of Nutrition 28, 357371.CrossRefGoogle Scholar
Condon, R. J., Hall, G. & Hatfield, B. E. (1970). Metabolism of abomasally infused 14C laboled ribonucleic acid, adenine, uracil and glycine. Journal of Animal Science 31, 10371038.Google Scholar
Condon, R. J. & Hatfield, E. E. (1970). Metabolism of abomasally infused ribonucleic acid by sheep. Journal of Animal Science 31, 1037.Google Scholar
Czerkawski, J. W. (1976). Chemical composition of microbial matter in the rumen. Journal of the Science of Food and Agriculture 27, 621632.CrossRefGoogle ScholarPubMed
Davidson, J. N. (1972). Biochemia Kwasów Nukleinowych, 3rd ed., p. 50. Warszawa: Państwowe Wydawnictwo Rolniczo i Leśne.Google Scholar
Ellis, W. C. & Bleichner, K. C. (1969). Apparent utilization of absorbed purines by sheep. Journal of Animal Science 29, 157.Google Scholar
Greife, H. & Molnar, S. (1978 a). Untersuchungen zum Nukleinsäurestoffwechsel der Ratte unter Einsatz 14C-markierter Purin–, Pyrimidinbasen und Nukleinsäuren. 1. Katabole Stoffwechselwege von Nukleinsäurederivaten. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 40, 236247.Google Scholar
Greife, H. & Molnar, S. (1978 b). Untersuchungen zum Nukleinsäurestoffwechsel der Ratte unter Einsatz 14C-markierter Purin-, Pyrimidinbasen and Nukleinsäuren. 2. Anabole Stoffwechselwege von Nukleinsäurederivaten. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 40, 248256.Google Scholar
Hale, J. L., Webb, K. E. & Fontenot, J. P. (1978). Utilization of abomasally infused RNA, and DNA by sheep. Abstracts of 70th Annual Meeting of ASAS. East Lansing: American Society of Animal Science.Google Scholar
Hawk, P. B., Oser, B. L. & Summerson, W. H. (1954). Practical Physiological Chemistry, 13th ed., p. 900. New York: The Blakiston Co.Google Scholar
Loring, H. S., Fairley, J. L., Bortner, H. W. & Seagran, H. L. (1952). A spectrophotometric method for the analysis of the purine and pyrimidine components of ribonucleic acid. Journal of Biological Chemistry 197, 809821.Google Scholar
Offer, N. W., Axford, R. F. E. & Evans, R. A. (1978). The effect of dietary energy source on nitrogen metabolism in the rumen of sheep. British Journal of Nutrition 40, 3543.CrossRefGoogle ScholarPubMed
Oldham, J. D. & Ling, J. R. (1977). Measurement of the rate of flow of dry matter in digesta passing through the duodenum of sheep. British Journal of Nutrition 37, 333343.CrossRefGoogle ScholarPubMed
Roth, F. X. & Kirchgessner, M. (1978). N-Umsatz und Allantoinausscheidung von Schafen bei Fiitterung steigender Mengen Bakterien- bzw. Sojaeiwoiss. Zeitschrift filr Tierphysiologie, Tierernährung und Futtermittelkunde 41, 7786.CrossRefGoogle Scholar
Ryś, R.Antoniewicz, A. & Maciejewicz, J. (1975). Allantoin in urine as an index of microbial protein in the rumen. In Tracer Studies on Non-protein Nitrogen for Ruminants, II, pp. 9598. Vienna: International Atomic Energy Agency.Google Scholar
Schneider, W. C. (1945). Phosphorus compounds in animal tissues. 1. Extraction and estimation of desoxypentose and of pentose nucleic acid. Journal of Biological Chemistry 161, 293303.Google Scholar
Siddons, R. C., Beever, D. E., Nolan, J.V., McAllan, A. B. & MacRae, J. C. (1979). Estimation of microbial protein in duodenal digesta. Annales de Recherches Vétérinaires 10, 286287.Google ScholarPubMed
Smith, R. H. & McAllan, A. B. (1970). Nucleic acid metabolism in the ruminant. 2. Formation of microbial nucleic acids in the rumen in relation to the digestion of food nitrogen, and the fate of dietary nucleic acids. British Journal of Nutrition 24, 545556.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1971). Nucleic acid metabolism in the ruminant. 3. Amounts of nucleic acids and total and ammonia nitrogen in digesta from the rumen, duodenum and ileum of calves. British Journal of Nutrition 25, 181189.Google Scholar
Smith, R. C., Moussa, N. M. & Hawkins, G. E. (1974). Utilization of nucleic acids of Eschorichia Coli and rumen bacteria by sheep. British Journal of Nutrition 32, 529537.CrossRefGoogle ScholarPubMed
Thomas, P. C. (1973). Microbial protein synthesis. Proceedings of the Nutrition Society 32, 8591.CrossRefGoogle ScholarPubMed
Topps, J. H. & Elliott, R. C. (1965). Relationship between concentration of ruminal nucleic acids and excretion of purine derivatives by sheep. Nature, London 205, 498499.Google Scholar
Young, E. G. & Conway, C. F. (1942). On the estimation of allantoin by the Rimini Schryver reaction. Journal of Biological Chemistry 142, 839852.Google Scholar