Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T12:11:32.351Z Has data issue: false hasContentIssue false

Effect of cattle slurry fractions on nitrogen mineralization in soil

Published online by Cambridge University Press:  27 March 2009

F. Diaz-Fierros
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C), Apartado 122, 15080 Santiago de Compostela, Spain
M. Carmen Villar
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C), Apartado 122, 15080 Santiago de Compostela, Spain
F. Gil
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C), Apartado 122, 15080 Santiago de Compostela, Spain
M. Carballas
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C), Apartado 122, 15080 Santiago de Compostela, Spain
M. Carmen Leiros
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C), Apartado 122, 15080 Santiago de Compostela, Spain
Tarsy Carballas
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C), Apartado 122, 15080 Santiago de Compostela, Spain
Ana Cabaneiro
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C), Apartado 122, 15080 Santiago de Compostela, Spain

Summary

The mineralization kinetics of nitrogen in acid soils, and their modification by the addition of an organic fertilizer (cattle slurry), were studied by incubating a humic cambisol for 36 weeks using a method based on that of Keeney & Bremner (1967). The cumulative curve of the quantity of nitrogen mineralized in soil not given fertilizer departs significantly from Stanford's theoretical model, which predicts linear dependence of nitrogen mineralized upon √t. The observed kinetics are interpreted as due to the superposition of two mineralization processes involving different substrates.

The cumulative mineralized nitrogen curves for soil samples enriched with the various slurry fractions likewise reflect complex kinetics involving at least two main substrates. Consideration of the net mineralized nitrogen shows that F,, the solid fraction with the highest C/N ratio, clearly induced immobilization of nitrogen during the first 130 days of incubation, and analysis of the NO3/NH4 ratio suggests that this immobilization was probably at the expense of nitrate. F3, the liquid fraction, first induced a brief period of mineralization and then stabilized nitrogen levels, giving rise to a reduction in net mineralized nitrogen. The addition to the soil of F2, the semi-liquid fraction, produced results intermediate between those of the other two fractions.

In conclusion, the increase in organic nitrogen in the soil after addition of cattle slurry depends in the short term on the liquid and semi-liquid fractions, whereas long-term effects involve both the stable residues of these fractions and the more solid fraction. The labile fraction of the pool of mineralizable N benefits more than the recalcitrant fraction, and the time constants of the mineralization process are reduced.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acea, M. J.Carballas, T. (1983). Caracterizacion de la poblacidn microbiana de un punin de vacuno. Anales de Edafolgia y Agrobiologia 42, 149159.Google Scholar
Acea, M. J.Carballas, T. (1986). Estudio de la poblacion microbiana de diversos tipos de suelos de zona humeda (NO de Espana). Anales de Edafologia y Agrobiologia 45, 381398.Google Scholar
Bremner, J. M.Keeney, D. R. (1965). Steam distillation methods for determination of ammonium, nitrate and nitrite. Analytica Chimica Ada 32, 485495.CrossRefGoogle Scholar
Campbell, C. A. (1978). Soil organic carbon, nitrogen and fertility. In Soil Organic Matter. Developments in Soil Science, no. 8 (ed. Schnitzer, H. and Khan, S. U.), pp. 173271. Amsterdam: Elsevier.Google Scholar
Deans, J. R., Molina, J. A.Clapp, C. E. (1986). Models for predicting potentially mineralizable nitrogen and decomposition rate constants. Soil Science Society of America Journal 50, 323326.CrossRefGoogle Scholar
Diaz-Fierros, F., Villar, M. C., Leiros, M. C., Carballas, M., Carballas, T.Cabaneiro, A. (1987). Laboratory study of the availability of nutrients in physical fractions of cattle slurry. Journal of Agricultural Science, Cambridge 108, 353359.CrossRefGoogle Scholar
Griffin, G. F.Laine, A. F. (1983). Nitrogen mineralization in soils previously amended with organic wastes. Agronomy Journal 75, 124129.CrossRefGoogle Scholar
Jenkinson, D. S.Raynee, J. H. (1977). The turnover of soil organic matter in some of the Rothamsted classicaln experiments. Soil Science 123, 298305.CrossRefGoogle Scholar
Jones, C. A. (1984). Estimation of an active fraction of soil Nitrogen mineralization in soils 497 nitrogen. Communications in Soil Science and Plant Analysis 15, 2332.CrossRefGoogle Scholar
Keeney, D. R.Bremner, J. M. (1967). Determination and isotope-ratio analysis of different forms of nitrogen in soil. 6. Mineralization nitrogen. Soil Science Society of America Proceedings 31, 3439.CrossRefGoogle Scholar
Leiros, M. C., Diaz-Fierros, F., Carballas, M., Cabaneiro, A., Carballas, T., Qil-Sotres, F.Villar, M. C. (1983). The soil dynamics of cattle slurry. 2. Nitrogen. Studies about humus. Transactions of the Vlllth International Symposium. Humus et Planta 2, 317320.Google Scholar
Molina, J. A. E., Clapp, C. E. aLarson, W. E. (1980). Potentially mineralizable nitrogen in soil: the simple exponential model does not apply for this first 12 weeks of incubation. Soil Science Society of America Journal 44, 442443.CrossRefGoogle Scholar
Paul, E. A.Van Veen, J. A. (1978). The use of tracers to determine the dynamic nature of organic matter. 11th International Congress of Soil Science, vol. 3, Symposia papers, pp. 61102.Google Scholar
Sluijsmans, C. M. J.Kolenbrander, G. J. (1976). The short-term and long-term effect of the nitrogen effect of farmyard manure. Stikstof 7, 349354.Google Scholar
Sluijsmans, C. M. J.Kolenbrander, G. J. (1977). Significance of animal manure as a source nitrogen in soils. Proceedings of the International Seminary Soil Environment and Fertility Management in Intensive Agriculture. Tokyo, Japan, pp. 403411.Google Scholar
Smith, O. L. (1979). Application of a model of the decomposition of soil organic matter. Soil Biology and Biochemistry 11, 607618.CrossRefGoogle Scholar
Stanford, G.Smith, S. J. (1972). Nitrogen mineralization potentials of soils. Soil Science Society of America Proceedings 36, 465472.CrossRefGoogle Scholar
Tusneem, M. E.Patrick, W. H. JR (1971). Nitrogen transformation in waterlogged soils. Bulletin of the Lousiana Agricultural Experiment Station 657, 75pp.Google Scholar