Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:20:40.890Z Has data issue: false hasContentIssue false

Economic potential of individual variation in milk yield response to concentrate intake of dairy cows

Published online by Cambridge University Press:  04 March 2010

G. ANDRÉ*
Affiliation:
Livestock Research, Wageningen University and Research Centre, P. O. Box 65, 8200 ABLelystad, The Netherlands
P. B. M. BERENTSEN
Affiliation:
Business Economics Group, Wageningen University and Research Centre, P. O. Box 8130, 6700 EWWageningen, The Netherlands
G. VAN DUINKERKEN
Affiliation:
Livestock Research, Wageningen University and Research Centre, P. O. Box 65, 8200 ABLelystad, The Netherlands
B. ENGEL
Affiliation:
Biometris, Wageningen University and Research Centre, P. O. Box 100, 6700 ACWageningen, The Netherlands
A. G. J. M. OUDE LANSINK
Affiliation:
Business Economics Group, Wageningen University and Research Centre, P. O. Box 8130, 6700 EWWageningen, The Netherlands
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The objectives of the current study were to quantify the individual variation in daily milk yield response to concentrate intake during early lactation and to assess the economic prospects of exploiting the individual variation in milk yield response to concentrate intake. In an observational study, data from 299 cows on four farms in the first 3 weeks of the lactation were collected. Individual response in daily milk yield to concentrate intake was analysed by a random coefficient model. Marked variation in individual milk yield response to concentrate intake was found on all four farms. An economic simulation was carried out, based on the estimated parameter values in the observational study. Individual optimization of concentrate supply is compared with conventional strategies for concentrate supply based on averaged population response parameters. Applying individual economic optimal settings for concentrate supply during early lactation, potential economic gain ranges from €0·20 to €2·03/cow/day.

Type
Modelling Animal Systems Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

André, G., Ouweltjes, W., Zom, R. L. G. & Bleumer, E. J. B. (2007). Increasing economic profit of dairy production utilizing individual real time process data. In Precision Livestock Farming ’07 (Ed. Cox, S.), pp. 179186. Wageningen: Wageningen Academic Publishers.CrossRefGoogle Scholar
André, G., Berentsen, P. B. M., Engel, B., de Koning, C. J. A. M. & Oude Lansink, A. G. J. M. (2010). Increasing the revenues from automatic milking by using individual variation in milking characteristics. Journal of Dairy Science 93, 942953.CrossRefGoogle ScholarPubMed
Beerda, B., Ouweltjes, W., Šebek, L. B. J., Windig, J. J. & Veerkamp, R. F. (2007). Effects of genotype by environment interactions on milk yield, energy balance, and protein balance. Journal of Dairy Science 90, 219228.CrossRefGoogle ScholarPubMed
Bines, J. A. (1976). Regulation of food intake in dairy cows in relation to milk production. Livestock Production Science 3, 115128.CrossRefGoogle Scholar
Broster, W. H. & Thomas, C. (1981). The influence of level and pattern of concentrate input on milk output. In Recent Advances in Animal Nutrition (Ed. Haresign, W.), pp. 7696. London: Butterworth.Google Scholar
Buckmaster, D. R. & Muller, L. D. (1994). Uncertainty in nutritive measures of mixed livestock rations. Journal of Dairy Science 77, 37163724.CrossRefGoogle Scholar
Cant, J. P. (2005). Integration of data in feed evaluation systems. In Quantitative Aspects of Ruminant Digestion and Metabolism (Eds Dijkstra, J., Forbes, J. M. & France, J.), 2nd edn, pp. 707726. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Coffey, M. P., Simm, G. & Brotherstone, S. (2002). Energy balance profiles for the first three lactations of dairy cows estimated using random regression. Journal of Dairy Science 85, 26692678.CrossRefGoogle ScholarPubMed
De Brabander, D. L., De Boever, J. L., Vanacker, J. M., Boucqué, Ch. V. & Botterman, S. M. (1999). Evaluation of physical structure in dairy cattle nutrition. In Recent Advances in Animal Nutrition (Eds Garnsworthy, P. C. & Wiseman, J.), pp. 111145. Nottingham, UK: Nottingham University Press.Google Scholar
DeVries, M. J., Beek, S. van der Kaal-Lansbergen, L. M. T. E., Ouweltjes, W. & Wilmink, J. B. M. (1999). Modeling of energy balance in early lactation and the effect of energy deficits in early lactation on first detected estrus postpartum in dairy cows. Journal of Dairy Science 82, 19271934.CrossRefGoogle Scholar
DeVries, M. J. & Veerkamp, R. F. (2000). Energy balance of dairy cattle in relation to milk production variables and fertility. Journal of Dairy Science 83, 6269.CrossRefGoogle Scholar
Duinkerken, G. van, André, G. & Zom, R. L. G. (2003). Prototype van een Dynamisch Krachtvoer Advies Systeem voor Melkvee. (Prototype of a Dynamic Model for Concentrate Feeding to Dairy Cows, in Dutch, with English abstract). Praktijkrapport 37, Lelystad: Praktijkonderzoek Veehouderij.Google Scholar
Efron, B. & Tibshirani, R. (1993). An Introduction to the Bootstrap. Boca Raton, FL: Chapman & Hall.CrossRefGoogle Scholar
Ekern, A. & Vik-Mo, L. (1983). Standard and lead feeding of dairy cows. Livestock Production Science 10, 443455.CrossRefGoogle Scholar
Genstat Committee. (2006). Genstat® Release 9 Reference Manual. Hemel Hempsted, UK: VSN International.Google Scholar
Kokkonen, T., Tesfa, A., Tuori, M. & Syrjälä-Qvist, L. (2004). Concentrate feeding strategy of dairy cows during transition period. Livestock Production Science 86, 239251.CrossRefGoogle Scholar
Knight, C. H. (1982). The mammary cell population in relation to milk yield. In Hannah Research Institute Report 1989, pp. 8995. Ayr: Hannah Research Institute.Google Scholar
LEI (2006). Cost Price of Milk at Dairy Farms. Den Haag, The Netherlands: LEI Bedrijven-Informatienet.Google Scholar
Maltz, E., Kroll, O., Spahr, S. L., Devir, S., Genizi, A. & Sagi, R. (1991). Milk yield, parity, and cow potential as variables for computerized concentrate supplementation strategy. Journal of Dairy Science 74, 22772289.CrossRefGoogle ScholarPubMed
Maltz, E., Devir, S., Kroll, O., Zur, B., Spahr, S. L. & Shanks, R. D. (1992). Comparative responses of lactating cows to total mixed rations or computerized individual concentrates feeding. Journal of Dairy Science 75, 15881603.CrossRefGoogle ScholarPubMed
Mepham, B. (1976). The Secretion of Milk. London: Edward Arnold Publishers.Google Scholar
Mood, A. M., Graybill, F. A. & Boes, D. C. (1974). Introduction to the Theory of Statistics. Singapore: McGraw-Hill.Google Scholar
Neal, H. D. St C. & Thornley, J. H. M. (1983). The lactation curve in cattle: a mathematical model of the mammary gland. Journal of Agricultural Science, Cambridge 101, 389400.CrossRefGoogle Scholar
Okine, E. K., Wang, Z., Goonewardene, L. A., Mir, Z. & Liu, M. F. (2001). Residual metabolizable feed consumption as a method of comparing feed efficiency in steers fed silage and silage-grain diets. Journal of Animal Feed Science and Technology 92, 8793.CrossRefGoogle Scholar
Ouweltjes, W. (1998). The relationship between milk yield and milking interval in dairy cows. Livestock Production Science 56, 193201.CrossRefGoogle Scholar
Owens, F. N., Secrist, D. S., Hill, W. J. & Gill, D. R. (1998). Acidosis in cattle: a review. Journal of Animal Science 76, 275286.CrossRefGoogle ScholarPubMed
Parks, J. R. (1982). A Theory of Feeding and Growth of Animals. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Robinson, G. K. (1991). That BLUP is a good thing: the estimation of random effects. Statistical Science 6, 1532.Google Scholar
Searle, S. R., Casella, G. & McCullouch, C. E. (1992). Variance Components. New York: Wiley.CrossRefGoogle Scholar
Tess, M. W. & Greer, R. C. (1990). Considerations for the specification and statistical estimation of differences among animals in the partial efficiencies of feed energy utilization. Journal of Dairy Science 73, 32973305.CrossRefGoogle Scholar
Thornley, J. H. M. & France, J. (2007). Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences, revised 2nd edn.Wallingford, Oxon: CAB International.CrossRefGoogle Scholar
Van Arendonk, J. A. M., Nieuwhof, G. J., Vos, H. & Korver, S. (1991). Genetic aspects of feed intake and efficiency in lactating dairy heifers. Livestock Production Science 29, 263275.CrossRefGoogle Scholar
Van Es, A. J. H. (1978). Feed evaluation for ruminants. I. The systems in use from May 1977 onwards in the Netherlands. Livestock Production Science 5, 331345.CrossRefGoogle Scholar
Vetharaniam, I., Davis, S. R., Upsdell, M., Kolver, E. S. & Pleasants, A. B. (2003). Modeling the effect of energy status on mammary gland growth and lactation. Journal of Dairy Science 86, 31483156.CrossRefGoogle ScholarPubMed
Wathes, C. M., Kristensen, H. H., Aerts, J-M. & Berckmans, D. (2005). Is precision livestock farming an engineer's daydream or nightmare, an animal's friend or foe, and a farmer's panacea or pitfall? In Precision Livestock Farming ’05 (Ed. Cox, S.), pp. 3347. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
West, M. & Harrison, J. (1997). Bayesian Forecasting and Dynamic Models, 2nd edn.New York: Springer-Verlag.Google Scholar