Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T04:15:19.915Z Has data issue: false hasContentIssue false

Current status in resistance to ACCase and ALS-inhibiting herbicides in rigid ryegrass populations from cereal crops in North of Tunisia

Published online by Cambridge University Press:  06 March 2020

Messaad Khammassi*
Affiliation:
National Institute of Field Crops, BP 120, 8170 Boussalem, Jendouba, Tunisia
Haifa Hajri
Affiliation:
Laboratory of Molecular Physiology, Center of Biotechnology of Borj Cedria, University of Manar, 2050 Hammam Lif, Tunisia
Yosra Menchari
Affiliation:
Higher Institute of Biotechnology of Bejà, Avenue Habib Bourguiba, 9000 Bejà, BP: 382, Tunisia
Hanane Chaabane
Affiliation:
Department of Plant Protection, National Institute of Agronomy of Tunisia, University of Carthage, 43 Avenue Charles Nicolle, 1082 Tunis, Tunisia
Touraya Souissi
Affiliation:
Department of Plant Protection, National Institute of Agronomy of Tunisia, University of Carthage, 43 Avenue Charles Nicolle, 1082 Tunis, Tunisia
*
Author for correspondence: Messaad Khammassi, E-mail: [email protected]

Abstract

A survey of the prevalence of rigid ryegrass (Lolium rigidum) resistant to ACCase and ALS herbicides was conducted in major-cereal growing regions in the north of Tunisia. Randomly collected ryegrass populations were assessed, using the Syngenta RISQ® test, for resistance to clodinafop-propargyl, iodosulphuron + mesosulphuron and pinoxaden. Of the 177 tested populations, 58% exhibited resistance to clodinafop-propargyl and 52% to iodosulphuron + mesosulphuron, with 40% exhibiting resistance to both herbicides. Significant variations in the frequencies of rigid ryegrass resistant to clodinafop-propargyl and/or iodosulphuron + mesosulphuron were observed between surveyed regions which may be the result of differences in the history of herbicide use. Over 50% of resistant populations contained 60% of resistant plants or more, indicating the extent of resistance evolution in these regions. Our study demonstrates that the extent of resistance to ACCase and ALS-inhibiting herbicides in rigid ryegrass is widespread in major cereal-growing regions of Tunisia. Therefore, weed management must be focused on reducing the frequency of herbicide application, using multiple herbicide mechanisms of action, rotating different modes of action and integrating alternative control options.

Type
Crops and Soils Research Paper
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous (2009) Guide Phytosanitaire de la Tunisie, 4th Edn.Tunis, Tunisia: Association Tunisienne pour la Protection des Plantes.Google Scholar
Anonymous (2015) Annual Report of the National Institute of Field Crops. Jendouba, Tunisia.Google Scholar
Beckie, HJ, Heap, IM, Smeda, RJ and Hall, LM (2000) Screening for herbicide resistance in weeds. Weed Technology 14, 428445.10.1614/0890-037X(2000)014[0428:SFHRIW]2.0.CO;2CrossRefGoogle Scholar
Beldi, S (2005) Evaluation de l'efficacité de la lutte chimique contre le ray-grass rigide dans la culture de blé et du risque de développement de la résistance herbicide. Tunis, Tunisie: Projet de Fin d'Etudes, Institut National Agronomique de Tunisie (INAT).Google Scholar
Burgos, NR, Tranel, PJ, Streibig, JC, Davis, VM, Shaner, D, Norsworthy, JK and Ritz, C (2013) Review: confirmation of resistance to herbicides and evaluation of resistance levels. Weed Science 61, 420.10.1614/WS-D-12-00032.1CrossRefGoogle Scholar
Burnet, MWM, Hart, Q, Holtum, JAM and Powles, SB (1994) Resistance to 9 herbicide classes in a population of rigid ryegrass (Lolium rigidum). Weed Science 42, 369377.10.1017/S0043174500076645CrossRefGoogle Scholar
Carème, C, Ben Brahim, N, Ben Harrath, B, Blaiech, G, Chemli, H, Kadraoui, Y, Kabouchi, H and Traia, M (1990) Les adventices des cultures méditerranéennes en Tunisie, leurs plantules, leurs semences. Publication Agricole No. 26, Tunisie.Google Scholar
Cook, T, Moore, J and Peltzer, S (2005) WEEDS: Profiles of common weeds of cropping. In Gill, G and Holmes, JE (eds), Integrated Weed Management in Australian Cropping Systems. Australia: Cooperative Research Centre for Australian Weed Management, pp. 250–253.Google Scholar
Délye, C (2013) Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Management Science 69, 176187.10.1002/ps.3318CrossRefGoogle Scholar
Délye, C, Boucansaud, K, Pernin, F and Couloume, B (2008) Détection de résistances aux inhibiteurs de l'ALS: des outils moléculaires pour un diagnostic rapide et fiable. Innovations Agronomiques 3, 157165.Google Scholar
De Prado, R, De Prado, JL and Menendez, J (1997) Resistance to substituted urea herbicides in Lolium rigidum biotypes. Pesticide Biochemistry and Physiology 57, 126136.10.1006/pest.1997.2270CrossRefGoogle Scholar
Duhoux, A and Délye, C (2013) Reference genes to study herbicide stress response in Lolium sp.: up-regulation of P450 genes in plants resistant to acetolactate-synthase inhibitors. PLoS ONE 8, e63576. https://doi.org/10.1371/journal.pone.0063576.CrossRefGoogle ScholarPubMed
Gasquez, J (2000) Extension des graminées foliaires en France. In COLUMA: Comité Francais de Lutte contre les Mauvaises Herbes (eds), 11ème Colloque International sur la Biologie des Mauvaises Herbes (6–8 Septembre, Dijon, France), Dijon, France, pp. 485491.Google Scholar
Gasquez, J, Fried, G and Delos, M, Gauvrit, C and Reboud, X (2008) Vers un usage raisonné des herbicides: analyse des pratiques en blé d'hiver de 2004 à 2006. Innovations Agronomiques 3, 145156.Google Scholar
Gasquez, J, Matejicek, A and Palavioux, K (2009) Sélection de résistants aux inhibiteurs de L'ALS chez des ray grass résistants aux inhibiteurs de L'ACCase. In AFPP: Association Française de Protection des Plantes (eds), XIIIème Colloque International sur la Biologie des Mauvaises Herbes (8–10 Septembre, Dijon, France), Dijon, France, pp. 370375.Google Scholar
Gill, GS (1995) Development of herbicide resistance in annual ryegrass populations (Lolium rigidum Gaud.) in the cropping belt of Western-Australia. Australian Journal of Experimental Agriculture 35, 6772.CrossRefGoogle Scholar
Hajri, H, Menchari, Y and Ghorbel, A (2015) Multiple resistance to acetyl coenzyme A carboxylase and acetolactate synthase-inhibiting herbicides in Tunisian ryegrass populations (Lolium rigidum). Journal of Agricultural Science and Technology 5, 738744.Google Scholar
Heap, I (2017) The International Survey of Herbicide Resistant Weeds (on line). Available at http://www.weedscience.com (Accessed 15 May 2017).Google Scholar
Heap, I (2019) The International Survey of Herbicide Resistant Weeds (on line). Available at http://www.weedscience.com (Accessed 23 October 2019).Google Scholar
Heap, I and Knight, R (1986) The occurrence of herbicide cross resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofopmethyl. Australian Journal of Agricultural Research 37, 149156.CrossRefGoogle Scholar
Hull, R, Tatnell, LV, Cook, SK, Beffa, R and Moss, SR (2014) Current status of herbicide resistant weeds in UK. Aspects of Applied Biology 127, 261272.Google Scholar
Kaundun, SS, Hutching, SJ, Dale, RP, Bailly, GC and Glanfield, P (2011) Syngenta RISQ test: a novel in-season method for detecting resistance to post-emergence ACCase and ALS inhibitor herbicides in grass weeds. Weed Research 51, 284293.CrossRefGoogle Scholar
Latiri, K, Lhomme, JP, Annabi, M and Setter, T (2010) Wheat production in Tunisia: progress, inter-annual variability and relation to rainfall. European Journal of Agronomy 33, 3342.CrossRefGoogle Scholar
Llewellyn, R and Powles, SB (2001) High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) in the wheat belt of Western Australia. Weed Technology 15, 242248.CrossRefGoogle Scholar
Malone, JM, Boutsalis, P, Baker, J and Preston, C (2014) Distribution of herbicide-resistant acetyl-coenzyme A carboxylase allele in Lolium rigidum across grain cropping areas of South Australia. Weed Research 54, 7886.10.1111/wre.12050CrossRefGoogle Scholar
Matthews, JM, Holtum, JAM, Liljegren, DR, Furness, B and Powles, SB (1990) Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). I. Properties of the herbicide target enzymes acetyl coenzyme A carboxylase and acetolactate synthase. Plant Physiology 94, 11801186.10.1104/pp.94.3.1180CrossRefGoogle ScholarPubMed
Menchari, Y, Annabi, M, Bahri, H and Latiri, K (2014) Herbicide use in wheat crops in Tunisia: Trends, variability and relation with weed resistance development. Available at http://www.ibimapublishing.com (Accessed 20 March 2016).Google Scholar
Moss, SR, Hull, RI, Marshall, R and Perryman, SAM (2014) Changes in the incidence of herbicide resistant Alopecurus myosuroides (black-grass) in England, based on sampling the same random fields on two occasions. In AAB: Association of Applied Biologists (eds), Aspects of Applied Biology 127, Crop Production in Southern Britain: Precision Decisions for Profitable Cropping. Peterborough, UK: Peterborough Arena, pp. 3948.Google Scholar
Neve, P and Powles, SB (2005) High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity 95, 485492.CrossRefGoogle ScholarPubMed
Owen, MJ, Walsh, MJ, Llewellyn, RS and Powles, SB (2007) Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Australian Journal of Agricultural Research 58, 711718.CrossRefGoogle Scholar
Owen, MJ, Martinez, NJ and Powles, SB (2014) Multiple herbicide-resistant Lolium rigidum (Annual ryegrass) now dominates across the Western Australian grain belt. Weed Research 54, 314324.CrossRefGoogle Scholar
Petit, C, Bay, G, Pernin, F and Délye, C (2010) Prevalence of cross or multiple resistance to the acetyl-coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black-grass (Alopecurus myosuroides Huds.) in France. Pest Management Science 66, 168177.Google ScholarPubMed
Powles, SB and Howat, PD (1990) Herbicide-resistant weeds in Australia. Weed Technology 4, 178185.CrossRefGoogle Scholar
Powles, SB and Matthews, JM (1992) Multiple herbicide resistance in annual ryegrass (Lolium rigidum): a driving force for the adoption for integrated weed management. In Denholm, I, Devonshire, AL and Hollomon, DW (eds), Resistance’ 91: Achievements and Developments in Combating Pesticide Resistance, 1st Edn.London: Elsevier Applied Science, pp. 7587.CrossRefGoogle Scholar
Powles, SB and Yu, Q (2010) Evolution in actions: plants resistant to herbicides. Annual Review of Plant Biology 61, 317347.CrossRefGoogle Scholar
Preston, C and Powles, SB (2002) Evolution of herbicide resistance in weeds: initial frequency of target-site based resistance to acetolactate synthase-inhibiting in Lolium rigidum. Heredity 88, 813.CrossRefGoogle ScholarPubMed
Preston, C, Wakelin, AM, Dolman, FC, Bostamam, Y and Boutsalis, P (2009) A decade of glyphosate-resistant Lolium around the world: mechanisms, genes, fitness, and agronomic management. Weed Science 57, 435441.CrossRefGoogle Scholar
Saari, LL, Cotterman, JC and Thill, DC (1994) Resistance to acetolactate and synthase inhibiting herbicides. In Powles, SB and Holtum, JAM (eds), Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL, USA: Lewis Publishers, pp. 83139.Google Scholar
Scarabel, L, Panozzo, S, Varotto, S and Sattin, M (2011) Allelic variation of the ACCase gene and response to ACCase-inhibiting herbicides in pinoxaden-resistant Lolium spp. Society of Chemical Industry 67, 932941.Google ScholarPubMed
Souissi, T, BelhadjSalah, H and Latiri, K (2001) Brome in cereal crops: infestations and management. L'Investisseur Agricole 42, 2932.Google Scholar
Souissi, T, Labidi, S and Ben Hadj Salah, H (2004) Mise en évidence et origine de la résistance herbicide du ray-grass (Lolium rigidum) dans les cultures de blé. Revue de l'INAT 18, 149161.Google Scholar
Tardif, FJ, Holtum, JAM and Powles, SB (1993) Occurrence of a herbicide resistant acetyl-coenzyme A carboxylase mutant in annual ryegrass (Lolium rigidum) selected by sethoxydim. Planta 190, 176181.CrossRefGoogle Scholar
Tranel, PJ and Wright, TR (2002) Resistance of weeds to ALS inhibiting herbicides: what have we learned. Weed Science 50, 700712.CrossRefGoogle Scholar
Yu, Q and Powles, S (2014) Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiology 166, 11061118.CrossRefGoogle ScholarPubMed
Yu, Q, Collavo, A, Zheng, MQ, Owen, M, Sattin, M and Powles, SB (2007) Diversity of acetyl-coenzyme A carboxylase mutation in resistant Lolium populations: evaluation clethodim. Plant Physiology 145, 547558.CrossRefGoogle ScholarPubMed