Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T08:20:06.675Z Has data issue: false hasContentIssue false

Controlled irrigation and nitrogen, phosphorous and potassium fertilization affect the biochemical composition and quality of Arabica coffee beans

Published online by Cambridge University Press:  05 December 2016

F. VINECKY
Affiliation:
Embrapa Recursos Genéticos e Biotecnologia (LGM), CP02372, CEP 70770-917 Brasilia, DF, Brazil
F. DAVRIEUX
Affiliation:
CIRAD UMR Qualisud, F-34398 Montpellier, France
A. C. MERA
Affiliation:
Embrapa Cerrados, CP0822, CEP 73310-970 Planaltina, DF, Brazil
G. S. C. ALVES
Affiliation:
Embrapa Recursos Genéticos e Biotecnologia (LGM), CP02372, CEP 70770-917 Brasilia, DF, Brazil
G. LAVAGNINI
Affiliation:
Embrapa Cerrados, CP0822, CEP 73310-970 Planaltina, DF, Brazil
T. LEROY
Affiliation:
CIRAD UMR AGAP, F-34398 Montpellier, France
F. BONNOT
Affiliation:
CIRAD UMR BGPI, F-34398 Montpellier, France
O. C. ROCHA
Affiliation:
Embrapa Cerrados, CP0822, CEP 73310-970 Planaltina, DF, Brazil
G. F. BARTHOLO
Affiliation:
Embrapa Café, Parque Estação Biológica, CEP 70770-901 Brasília, DF, Brazil
A. F. GUERRA
Affiliation:
Embrapa Café, Parque Estação Biológica, CEP 70770-901 Brasília, DF, Brazil
G. C. RODRIGUES
Affiliation:
Embrapa Informática Agropecuária, CP6041, CEP 13083-886, Campinas, SP, Brazil
P. MARRACCINI
Affiliation:
Embrapa Recursos Genéticos e Biotecnologia (LGM), CP02372, CEP 70770-917 Brasilia, DF, Brazil CIRAD UMR AGAP, F-34398 Montpellier, France
A. C. ANDRADE*
Affiliation:
Embrapa Café, Parque Estação Biológica, CEP 70770-901 Brasília, DF, Brazil Universidade Federal de Lavras (INOVACAFÉ), Campus Universitário, CEP 37200-000 Lavras, MG, Brazil
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Controlled irrigation during the dry period associated with adequate nitrogen (N), phosphorous (P) and potassium (K) fertilization led to the accumulation of biochemical compounds in coffee beans considered as positive precursors of beverage quality. Adult plants of coffee (Coffea arabica ‘Rubi’) were cultivated using different water regimes (WR) and fertilization conditions under the dry climate of the Brazilian Cerrado. Coffee-bean physical characteristics were evaluated as well as biochemical composition by near-infrared analysis. The K treatment mostly affected bean biochemistry, lipid and chlorogenic acid (CGA) contents, which increased with increasing amounts of fertilizer. Caffeine contents increased with higher amounts of N, but no significant effects of P treatment on bean biochemical composition were observed. Sucrose and total lipid contents always appeared higher in beans of non-irrigated plants than those beans from plants grown with continuous irrigation. In contrast, caffeine and CGA contents were higher in beans of irrigated as compared with non-irrigated plants. For the first time, the current results showed that controlled management of irrigation during the dry period associated with reasonable NPK fertilization led to the accumulation of biochemical compounds in coffee beans considered as positive precursors of beverage quality.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amorim, H. V. (1970). Nutritional status of the coffee plant and beverage quality. Indian Coffee 34, 331335.Google Scholar
Anand, C. G., Kumar, P. & D'souza, G. F. (2014). Pre-mature fruit drop and coffee production in India: a review. Indian Journal of Plant Physiology 19, 230237.CrossRefGoogle Scholar
Andrade, L. R. M. (2004). Corretivos e fertilizantes para culturas perenes e semiperenes. In Cerrado: Correção do Solo e Adubação, 2nd edn (Eds de Sousa, D. M. G. & Lobato, E.), pp. 317366. Brasília: Embrapa Informação Tecnológica.Google Scholar
Avelino, J., Barboza, B., Araya, J. C., Fonseca, C., Davrieux, F., Guyot, B. & Cilas, C. (2005). Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. Journal of the Science of Food and Agriculture 85, 18691876.Google Scholar
Barros, R. S., da, S. e, Mota, J. W., Da Matta, F. M. & Maestri, M. (1997). Decline of vegetative growth in Coffea arabica L. in relation to leaf temperature, water potential and stomatal conductance. Field Crops Research 54, 6572.Google Scholar
Bunn, C., Läderach, P., Perez Jimenez, J. G., Montagnon, C. & Schilling, T. (2015). Multiclass classification of agro-ecological zones for arabica coffee: an improved understanding of the impacts of climate change. PLoS ONE 10, e0140490.Google Scholar
Cannell, M. G. R. (1985). Physiology of the coffee crop. In Coffee: Botany, Biochemistry and Production of Beans and Beverage (Eds Clifford, N. M. & Willson, K. C.), pp. 108134. New York: Springer.Google Scholar
Cannell, M. G. R. & Huxley, P. A. (1969). Seasonal differences in the pattern of assimilate movement in branches of Coffea arabica L. Annals of Applied Biology 64, 345357.Google Scholar
Carvalho, C. H. S., Fazuoli, L. C., Carvalho, G. R., Guerreiro-Filho, O., Pereira, A. A., De Almeida, S. R., Matiello, J. B., Bartholo, G. F., Sera, T., Moura, W. M., Mendes, A. M. G., De Rezende, J. C., Da Fonseca, A. F. A., Ferrão, M. A. G., Ferrão, R. G., Nacif, A. P., Silvarolla, M. B. & Braghini, M. T. (2008). Cultivares de café arábica de porte baixo. In Cultivares de Café: Origem, Características e Recomendações (Ed. Carvalho, C. H. S.), pp. 157226. Brasilia, Brazil: Embrapa Café.Google Scholar
Chalfun-Junior, A., Melo, E. F., Fernandes, C. N., Barquero, L. O. B. & Alves, J. D. (2011). Modifications in the carbohydrates metabolism in seedlings of coffee tree progeny Siriema under drought conditions. In Proceedings of the 23rd International Conference on Coffee Science – Genomics & Genetics (Ed ASIC), CD-rom PB756. Paris, France: Association for Science and Information on Coffee.Google Scholar
Cong, P., Sat, C. & Härdter, R. (2001). Response of selected crops to K fertilization on major soil types in South Vietnam. In Plant Nutrition: Food Security and Sustainability of Agro-ecosystems through Basic and Applied Research (Eds Horst, W. J., Schenk, M. K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W. B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., Schmidhalter, U., Schubert, S., Wirén, N. V. & Wittenmayer, L.), pp. 820821. Developments in Plant and Soil Sciences, vol. 92. Dordrecht, Netherlands: Springer.Google Scholar
DaMatta, F. M. (2003). Drought as a multidimensional stress affecting photosynthesis in tropical tree crops. In Advances in Plant Physiology (Ed. Hemantaranjan, A.), pp. 227265. Jodhpur, India: Scientific Publishers.Google Scholar
DaMatta, F. M. & Ramalho, J. D. C. (2006). Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology 18, 5581.Google Scholar
DaMatta, F. M., Amaral, J. A. & Rena, A. B. (1999). Growth periodicity in trees of Coffea arabica L. in relation to nitrogen supply and nitrate reductase activity. Field Crops Research 60, 223229.Google Scholar
DaMatta, F. M., Ronchi, C. P., Maestri, M. & Barros, R. S. (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology 19, 485510.Google Scholar
Davis, A. P., Gole, T. W., Baena, S. & Moat, J. (2012). The impact of climate change on indigenous Arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7, e47981.Google Scholar
Davrieux, F., Manez, J. C., Durand, N. & Guyot, B. (2003). Determination of the content of six major biochemical compounds of green coffee using near infrared spectroscopy. In 11th International Conference on Near Infrared Spectroscopy, Cordoba, Spain (Eds Davies, A. M. C. & Garrido-Varo, A.), pp. 441444. Chichester, UK: NIR Publications.Google Scholar
Decazy, F., Avelino, J., Guyot, B., Perriot, J. J., Pineda, C. & Cilas, C. (2003). Quality of different Honduran coffees in relation to several environments. Journal of Food Science 68, 23562361.Google Scholar
De Maria, C. A. B., Trugo, L. C., Moreira, R. F. A. & Werneck, C. C. (1994). Composition of green coffee fractions and their contribution to the volatile profile formed during roasting. Food Chemistry 50, 141145.Google Scholar
Devaux, M. F., Bertrand, D., Robert, P. & Qannari, M. (1988). Application of multidimensional analysis to the extraction of discriminant spectral patterns from NIR spectra. Applied Spectroscopy 42, 10151020.Google Scholar
Downey, G., Robert, P., Bertrand, D. & Kelly, P. M. (1990). Classification of commercial skim milk powders according to heat treatment using factorial discriminant analysis of near-infrared reflectance spectra. Applied Spectroscopy 44, 150155.Google Scholar
Farah, A. & Donangelo, C. M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plant Physiology 18, 2336.Google Scholar
Geromel, C., Ferreira, L. P., Davrieux, F., Guyot, B., Ribeyre, F., Dos Santos Scholz, M. B., Pereira, L. F. P., Vaast, P., Pot, D., Leroy, T., Androcioli Filho, A., Vieira, L. G. E., Mazzafera, P. & Marraccini, P. (2008). Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiology and Biochemistry 46, 569579.Google Scholar
Green, V. S., Stott, D. E., Cruz, J. C. & Curi, N. (2007). Tillage impacts on soil biological activity and aggregation in a Brazilian Cerrado Oxisol. Soil and Tillage Research 92, 114121.Google Scholar
Guerra, A. F., Rocha, O. C., Rodrigues, G. C., Sanzonowicz, C., Ribeiro Filho, G. C., Mera, A. C. & Cordeiro, A. (2008). Improvement of coffee production system by using controlled water stress and phosphorous application in the cerrado and south of Minas Gerais state regions. In Proceedings of the 22nd International Conference on Coffee Science – Agronomy & Ecophysiology (Ed. ASIC), PA512_2008. Paris, France: Association for Science and Information on Coffee.Google Scholar
Guyot, B., Gueule, D., Manez, J. C., Perriot, J. J., Giron, J. & Villain, L. (1996). Influence de l'altitude et de l'ombrage sur la qualité des cafés arabica. Plantations, Recherche, Développement 3, 272280.Google Scholar
Ky, C. L., Louarn, J., Dussert, S., Guyot, B., Hamon, S. & Noirot, M. (2001). Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chemistry 75, 223230.Google Scholar
Leroy, T., Ribeyre, F., Bertrand, B., Charmetant, P., Dufour, M., Montagnon, C., Marraccini, P. & Pot, D. (2006). Genetics of coffee quality. Brazilian Journal of Plant Physiology 18, 229242.Google Scholar
Leroy, T., De Bellis, F., Legnate, H., Kananura, E., Gonzales, G., Pereira, L. F., Andrade, A. C., Charmetant, P., Montagnon, C., Cubry, P., Marraccini, P., Pot, D. & De Kochko, A. (2011). Improving the quality of African robustas: QTLs for yield- and quality-related traits in Coffea canephora . Tree Genetics and Genomes 7, 781798.CrossRefGoogle Scholar
Praxedes, S. C., DaMatta, F. M., Loureiro, M. E., Ferrão, M. A. G. & Cordeiro, A. T. (2006). Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environmental and Experimental Botany 56, 263273.Google Scholar
R Development Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ramalho, J. C., Quartin, V. L., Leitão, A. E., Campos, P. S., Carelli, M. L., Fahl, J. I. & Nunes, M. A. (2003). Cold acclimation ability of photosynthesis among species of the tropical Coffea genus. Plant Biology 5, 631641.CrossRefGoogle Scholar
Ratter, J. A., Ribeiro, J. F. & Bridgewater, S. (1997). The Brazilian cerrado vegetation and threats to its biodiversity. Annals of Botany 80, 223230.CrossRefGoogle Scholar
Ribeiro, J. S., Augusto, F., Salva, T. J. G., Thomaziello, R. A. & Ferreira, M. M. C. (2009). Prediction of sensory properties of Brazilian Arabica roasted coffees by headspace solid phase microextraction-gas chromatography and partial least squares. Analytica Chimica Acta 634, 172179.Google Scholar
Scanlon, M. G., Pritchard, M. K. & Adam, L. R. (1999). Quality evaluation of processing potatoes by near infrared reflectance. Journal of the Science of Food and Agriculture 79, 763771.Google Scholar
Shenk, J. S. & Westerhaus, M. O. (1991). Population definition, sample selection, and calibration procedures for near infrared reflectance spectroscopy. Crop Science 31, 469474.CrossRefGoogle Scholar
Silva, E. B., Nogueira, F. D., Guimarães, P. T. G., Chagas, S. J. R. & Costa, L. (1999). Fontes e doses de potássio na produção e qualidade do grão de café beneficiado. Pesquisa Agropecuária Brasileira 34, 335345.Google Scholar
Silva, E. A., DaMatta, F. M., Ducatti, C., Regazzi, A. J. & Barros, R. S. (2004). Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Research 89, 349357.Google Scholar
Silva, E. A., Mazzafera, P., Brunini, O., Sakai, E., Arruda, F. B., Mattoso, L. H. C., Carvalho, C. R. L. & Pires, R. C. M. (2005). The influence of water management and environmental conditions on the chemical composition and beverage quality of coffee beans. Brazilian Journal of Plant Physiology 17, 229238.Google Scholar
Vaast, P., Bertrand, B., Perriot, J. J., Guyot, B. & Génard, M. (2006). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture 86, 197204.CrossRefGoogle Scholar
Waller, J. M., Bigger, M. & Hillocks, R. J. (2007). Nutrient deficiencies and physiological disorders. In Coffee Pests, Diseases and Their Management (Eds Waller, J. M., Bigger, M. & Hillocks, R. J.), pp. 277288. Wallingford, UK: CABI.CrossRefGoogle Scholar
Williams, P. & Norris, K. (1990). Near-Infrared Technology in the Agricultural and Food Industries. St. Paul, MN, USA: American Association of Cereal Chemists Inc.Google Scholar
Willson, K. C. (1985). Mineral nutrition and fertilizer needs. In Coffee Botany, Biochemistry and Production of Beans and Beverage (Eds Clifford, M. N. & Willson, K. C.), pp. 135156. London: Croom Helm.Google Scholar