Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T02:03:15.071Z Has data issue: false hasContentIssue false

A comparative study of winter wheat varieties with especial reference to winter-killing1

Published online by Cambridge University Press:  27 March 2009

Robert Newton
Affiliation:
University of Alberta, Edmonton.

Extract

1. A number of varieties of winter wheat, known to vary considerably in degree of winter hardiness, were compared in the hardened condition with reference to the physical constants of the cell sap, and the content of dry matter, nitrogen, sugars and starch.

2. No constant relation was found between depression of the freezing point, specific conductivity, or hydrogen-ion concentration of the cell sap and relative frost hardiness.

3. Sugars accounted for 34 to 38 per cent, of the total osmotic pressure of the sap.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1922

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Abbe, C.Exp. Sta. Record, 6 (1895), p. 777.Google Scholar
(2)Åkerman, Å., and Johansson, H.Sveriges Utsädeförenings Tidnkrift, 27 (1917), p. 77.Google Scholar
(3)D'Arsonval, M.Compt. Rend. Acad. Sci. Paris, 133 (1901), p. 84.Google Scholar
(4)Beach, S. A., and Allen, F. W. Jr. Iowa Agr. Exp. Sta. Research Bull. 21 (1915).Google Scholar
(5)Blackman, F. F.New Phyt. 8 (1909), p. 354.CrossRefGoogle Scholar
(6)Chandler, W. H.Missouri Agr. Exp. Sta. Research Bull. 8 (1913).Google Scholar
(7)Coville, F. V.J. Agr. Research, 20 (1920), p. 151.Google Scholar
(8)Davis, W. A., and Daish, A. J.J. Agr. Sci. 5 (1913), p. 437.CrossRefGoogle Scholar
(9)Davts, W. A., Daish, A. J., and Sawyer, G. C.J. Agr. Sci. 7 (1916), p. 255.Google Scholar
(10)Dixon, H. H., and Atkins, W. R. G.Sci. Proc. Roy. Diblin Soc., N.S. 13 (1913), p. 422.Google Scholar
(11)Dithamel du Monceatt, H. L., and Buffon, G. L. L.Mem. Math. et. Phys. Acad,. Roy. Sci. Paris (1737), p. 273. Cited by Chandler (6).Google Scholar
(12)Gassner, G., and Geimme, C.Ber. Deut. Bot. Gesell. 31 (1913), p. 507.Google Scholar
(13)Goeppert, H. R.Ueber die. Wärmeentwickelung in dem, Pflavzen. Book (1830). Cited by Chandler (6).Google Scholar
(14)Gorke, H.Landw. Vers. Stat. 65 (1906), p. 149.Google Scholar
(15)Gortner, R. A., and Harris, J. A.Plant World, 17 (1914), p. 49.Google Scholar
(16)Gortner, R. A., Lawrence, J. V., and Harris, J. A.Biochem. Bull. 5 (1910), p. 139.Google Scholar
(17)Greeley, A. W.Amer. J. Physiol. 6 (1901), p. 122.CrossRefGoogle Scholar
(18)Harris, J. A., and Gortner, R. A.Amer. J. Bot. 1 (1914), p. 75.CrossRefGoogle Scholar
(19)Harvey, R. B.J. Agr. Research, 15 (1918), p. 83.Google Scholar
(20)Harvey, R. B.Bot. Gaz. 67 (1919), p. 441.CrossRefGoogle Scholar
(21)Harvey, R. B.Amer. J. Bot. 9 (1920), p. 211.CrossRefGoogle Scholar
(22)Haynes, , Dorothy, . Biochem. J. 13 (1919), p. 111.CrossRefGoogle Scholar
(23)Horne, W. D.J. Amer. Chem. Soc. 26 (1904), p. 180.CrossRefGoogle Scholar
(24)Johnston, E. S.Amer. J. Bot. 6 (1919), p. 373.CrossRefGoogle Scholar
(25)Lewis, F. J., and Tuttle, , Gwynethe, M.Annals Bot. 34 (1920), p. 405.CrossRefGoogle Scholar
(26)Lidforss, B.Lunds Univ. Arssler. 2 (1907), No. 13.Google Scholar
(27)MacDougal, D. T.Carnegie Inst. Wash. Pub. 297 (1920).Google Scholar
(28)Mason, T. G.Sci. Proc. Roy. Dublin Soc. N.S. 15 (1919), p. 651.Google Scholar
(29)Matruchot, L., and Molliard, M.Compt. Rend,. Acad,. Sci. Paris, 130 (1900), p. 788; 132 (1901), p. 495.Google Scholar
(30)Maximov, N. A.Ber. Deut. Bot. Gesell. 30 (1912), pp. 52, 293, 504.Google Scholar
(31)Mez, C.Flora, 94 (1905), p. 89.Google Scholar
(32)Miyakb, , Kiichi, . Bot. Gaz. 33 (1902), p. 321.CrossRefGoogle Scholar
(33)Müller-Thurgau, H.Landw. Jahrb. 9 (1880), p. 133; 15 (1886), p. 453.Google Scholar
(34)Ohlweiler, W. W.Missouri Bot. Gard., Ann. Report, 23 (1912), p. 101.CrossRefGoogle Scholar
(35)Pantanelli, E.Atti della Reale Academia dei Lincei, Ser. 5, 27 (1918), pp. 120, 148; 28 (1919), p. 205. Abs. in Int. Rev. Sci. Pract. Agr. 9 (1918), p. 1.416; 10 (1919), p. 844.Google Scholar
(36)Peters, A. W. J.Amer. Chem. Soc. 34 (1912), p. 422.CrossRefGoogle Scholar
(37)Rosa, J. T. Jr. Proc. Amer. Soc. Hort. Sci. 16 (1919), p. 190.Google Scholar
(38)Sachs, J.Landw. Vers. Stat. 2 (1860), p. 107.Google Scholar
(39)Salmon, S. C., and Fleming, F. L.J. Agr. Research 13 (1918), p. 497.Google Scholar
(40)Schaffnit, E.Mitt. Kaiser Wilhelms Inst. Landw. Bromberg, 3 (1910), p. 93.Google Scholar
(41)Schmidt, C. L. A., and Hoagland, D. R.Univ. Cal. Pub. Physiol. 5 (1910).Google Scholar
(42)Shaffer, P. A., and Hartmann, A. F.J. Biol. Chem. 45 (1921), p. 349.CrossRefGoogle Scholar
(43)Shutt, F. T.Trans. Roy. Soc. Can. Ser. 2, 9 (1903), sect. 4, p. 149.Google Scholar
(44)Sinz, E.J. Landw. 62 (1914), p. 301.Google Scholar
(45)Spoehr, H. A.Carnegie Inst. Wash. Pub. 287 (1919).Google Scholar
(46)Van Slyke, D. D.J. Biol. Chem. 10 (1911), p. 15.CrossRefGoogle Scholar
(47)White, W. P.Physical Review, 31 (1910), p. 135.Google Scholar
(48)Wiegand, K. M.Plant World, 9 (1906), pp. 25, 107.Google Scholar
(49)Wiegand, K. M.Bot. Gaz. 41 (1906), p. 373.CrossRefGoogle Scholar