Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T21:45:23.233Z Has data issue: false hasContentIssue false

Climate variability and potential distribution of selected pest species in south Moravia and north-east Austria in the past 200 years – lessons for the future

Published online by Cambridge University Press:  05 March 2013

E. SVOBODOVÁ*
Affiliation:
Institute of Agrosystems and Bioclimatology, Mendel University of Agriculture and Forestry Brno, Czech Republic CzechGlobe – Global Change Research Centre ASCR, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
M. TRNKA
Affiliation:
Institute of Agrosystems and Bioclimatology, Mendel University of Agriculture and Forestry Brno, Czech Republic CzechGlobe – Global Change Research Centre ASCR, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
Z. ŽALUD
Affiliation:
Institute of Agrosystems and Bioclimatology, Mendel University of Agriculture and Forestry Brno, Czech Republic CzechGlobe – Global Change Research Centre ASCR, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
D. SEMERÁDOVÁ
Affiliation:
Institute of Agrosystems and Bioclimatology, Mendel University of Agriculture and Forestry Brno, Czech Republic
M. DUBROVSKÝ
Affiliation:
CzechGlobe – Global Change Research Centre ASCR, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
J. EITZINGER
Affiliation:
CzechGlobe – Global Change Research Centre ASCR, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic Institute of Meteorology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
P. ŠTĚPÁNEK
Affiliation:
CzechGlobe – Global Change Research Centre ASCR, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
R. BRÁZDIL
Affiliation:
CzechGlobe – Global Change Research Centre ASCR, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic Institute of Geography, Masaryk University, Brno, Czech Republic
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The present study investigated the historical occurrence of the European corn borer (Ostrinia nubilalis), the European grape vine moth (Lobesia botrana) and the Codling moth (Cydia pomonella) in southern Moravia and northern Austria from 1803–2008 by using climate and pest models. The pest model used, CLIMEX, indicates areas that are climatically favourable for the pest's development and long-term survival, considering the climatic parameters, especially daily air temperature, as determining factors for pest development. For model input parameters, two sets of meteorological data were prepared: (i) a generated meteorological series for 1803–2008 and (ii) a measured reference meteorological series for 1976–2008. In addition to estimating the historical climatic suitability for the persistence of a given pest, a second aim of the present study was to specify the core of the climatic niche during the continued presence of the pest and evaluate the applicability of the meteorological data generated for climate, based on pest mapping. This evaluation resulted in a partial overestimation of pest occurrence for L. botrana when using the generated meteorological data set. This species, native to warmer areas, has proved to be a sensitive indicator of increased temperatures.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. P., Gómez-Laverde, M. & Peterson, A. T. (2002). Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecology and Biogeography 11, 131141.Google Scholar
Beddow, J. M., Kriticos, D., Pardey, P. G. & Sutherst, R. W. (2010). Potential Global Crop Pest Distributions using CLIMEX. Harvest Choice Applications. Washington, DC: Harvest Choice. Available from http://harvestchoice.org/publications/potential-global-crop-pest-distributions-using-climex-harvestchoice-applications (verified 25 July 2011).Google Scholar
Bírová, H., Brestovský, J., Jakubčin, P. & Longauerová, J. (1990). Skúsenosti s vypúšt'aním Trichogramy hnedej, Trichogramma evanescens, proti vijačke kukuričnej, Ostrinia nubilalis, na cukrovej kukurici. Ochrana Rostlin 26, 2936.Google Scholar
Blago, N. & Dickler, E. (1990). Effectiveness of the Californian prognosis model ‘Bugoff 2’ for Cydia pomonella L. (Lepidoptera, Tortricidae) under Central European conditions. Acta Horticulturae 276, 5362.Google Scholar
Boivin, T., Chadoeuf, J., Bouvier, J. C., Beslay, D. & Sauphanor, B. (2005). Modelling the interactions between phenology and insecticide resistance genes in the codling moth Cydia pomonella. Pest Management Science 61, 5367.Google Scholar
Bourg, N. A., McShea, W. J. & Gill, D. E. (2005). Putting a CART before the search: successful habitat prediction for a rare forest herb. Ecology 86, 27932804.Google Scholar
Brázdil, R., Zahradníček, P., Pišoft, P., Štěpánek, P., Bělínová, M. & Dobrovolný, P. (2012). Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theoretical and Applied Climatology 110, 1734.Google Scholar
Briere, J-F., Pracros, P., Le Roux, A. & Pierre, J-S. (1999). A novel rate model of temperature-dependent development for arthropods. Environmental Entomology 28, 2229.Google Scholar
Caffarra, A., Rinaldi, M., Eccel, E., Rossi, V. & Pertot, I. (2012). Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agriculture, Ecosystems and Environment 148, 89101.CrossRefGoogle Scholar
Casada González, D. (2007). Cydia pomonella (L.) behavior and responses to host volatiles. Ph.D. Thesis, Universitat de Lleida.Google Scholar
Deseo, K. V., Marani, F., Brunelli, A. & Bertaccini, A. (1981). Observations on the biology and diseases of Lobesia botrana Den. and Schiff. (Lepidoptera, Tortricidae) in central-north Italy. Acta Phytopathologica Academiae Scientiarum Hungaricae 16, 405431.Google Scholar
Dubrovský, M., Buchtele, J. & Žalud, Z. (2004). High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling. Climatic Change 63, 145179.Google Scholar
Eitzinger, J., Kersebaum, K. C. & Formayer, H. (2009). Landwirtschaft im Klimawandel – Auswirkungen und Anpassungsstrategien für die Land- und Forstwirtschaft in Mitteleuropa. Clenze, Germany: Agrimedia.Google Scholar
Ferro, D. N. & Harwood, R. F. (1973). Intraspecific larval competition by the codling moth. Laspeyresia pomonella. Environmental Entomology 2, 783789.CrossRefGoogle Scholar
Fleishman, E., MacNally, R. & Fay, J. P. (2003). Validation tests of predictive models of butterfly occurrence based on environmental variables. Conservation Biology 17, 806817.Google Scholar
Gabel, B. & Mocko, V. (1984). Forecasting the cyclical timing of the grape vine moth, Lobesia botrana (Lepidoptera, Tortricidae). Acta Entomologica Bohemoslovaca 81, 114.Google Scholar
Goudriaan, J. & Zadoks, J. C. (1995). Global climate change: modelling the potential responses of agro-ecosystems with special reference to crop protection. Environmental Pollution 87, 215224.CrossRefGoogle ScholarPubMed
Graf, B., Höpli, H. & Höhn, H. (2003). Optimising insect pest management in apple orchard with SOPRA. IOBC/wprs Bulletin 26, 4350.Google Scholar
Griebeler, E. M. & Gottschalk, E. (2000). The influence of temperature model assumptions on the prognosis accuracy of extinction risk. Ecological Modelling 134, 343356.Google Scholar
Gutierrez, A. P., Ponti, L., Cooper, M. L., Gilioli, G., Baumgartner, J. & Duso, C. (2012). Prospective analysis of the invasive potential of the European grapevine moth Lobesia botrana (Den. & Schiff.) in California. Agricultural and Forest Entomology 14, 225238.Google Scholar
Hoddle, M. S. (2004). The potential adventive geographic range of glassy-winged sharpshooter, Homalodisca coagulata and the grape pathogen Xylella fastidiosa: implications for California and other grape growing regions of the world. Crop Protection 23, 691699.Google Scholar
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22, 415457.Google Scholar
Kapler, P., Picková, A. & Pražan, J. (2007). Analýza Adaptačních Opatření na Změnu Klimatu na Území ČR v Oblasti Zemědělství. Výstup Funkčního Úkolu MZe ČR č. 4228. Brno, Czech Republic: VÚZE.Google Scholar
Kocmánková, E., Trnka, M., Žalud, Z., Semerádová, D., Dubrovský, M., Muška, F. & Možný, M. (2008). Comparison of mapping methods of potential distribution of pests under present and changed climate. Plant Protection Science 44, 4956.Google Scholar
Kocmánková, E., Trnka, M., Eitzinger, J., Dubrovský, M., Štěpánek, P., Semerádová, D., Balek, J., Skalák, P., Farda, A., Juroch, J. & Žalud, Z. (2011). Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach. Journal of Agricultural Science, Cambridge 149, 185195.Google Scholar
Lisek, J. (2008). Climatic factors affecting development and yielding of grapevine in central Poland. Journal of Fruit and Ornamental Plant Research 16, 285293.Google Scholar
Louis, F., Schmidt-Tiedemann, A. & Schirra, K. J. (2002). Control of Sparganothis pilleriana Schiff. and Lobesia botrana Den. & Schiff. in German vineyards using sex pheromone-mediated mating disruption. IOBC/WPRS Bulletin 25, 19.Google Scholar
Martin-Vertedor, D., Ferrero-Garcia, J. J. & Torres-Vilas, L. M. (2010). Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agricultural and Forest Entomology 12, 169176.CrossRefGoogle Scholar
Milonas, P. G., Savopoulou-Soultani, M. & Stavridis, D. G. (2001). Day-degree models for predicting the generation time and flight activity of local populations of Lobesia botrana (Den. & Schiff.) (Lep., Tortricidae) in Greece. Journal of Applied Entomology 125, 515518.Google Scholar
Mitchell, T. D., Carter, T. R., Jones, P. D., Hulme, M. & New, M. (2003). A Comprehensive Set of High-Resolution Grids of Monthly Climate for Europe and the Globe: the Observed Record (1901–2000) and 16 Scenarios (2001–2100). Tyndall Centre for Climate Change Research, Working paper 55. Norwich, UK: University of East Anglia.Google Scholar
Moravie, M. A., Davison, A. C., Pasquier, D. & Charmillot, P. J. (2006). Bayesian forecasting of grape moth emergence. Ecological Modelling 197, 478489.Google Scholar
Moschos, T., Broumas, T., Souliotis, C., Tsourgianni, A. & Kapothanassi, V. (1998). Experiments on the control of the European grapevine moth Lobesia botrana Den. et Schiff. (Lepidoptera, Tortricidae) with the mating disruption method in the area of Spata Attiki, Greece. Anales de l'Institut Phytopathologique Benaki 18, 8195.Google Scholar
Neamtu, M., Barbulescu, A., Petrisor, C., Stinga, A., Cornel, S., Drosu, S., Chireceanu, C., Ioan, R. & Cristian, B. (2008). Using a phenology model of codling moth (Cydia pomonella) to improve timing of control measures in apple orchards. Acta Horticulturae 803, 8390.CrossRefGoogle Scholar
New, M., Hulme, M. & Jones, P. D. (2000). Representing twentieth century space-time climate variability. Part 2: development of 1901–96 monthly grids of terrestrial surface climate. Journal of Climate 13, 22172238.2.0.CO;2>CrossRefGoogle Scholar
Oerke, E. C. & Dehne, H-W. (1997). Global crop production and the efficacy of crop protection – current situation and future trends. European Journal of Plant Pathology 103, 203215.Google Scholar
Onstad, D. W. & Brewer, E. F. (1996). Modeling induction of diapause in North American Ostrinia nubilalis (Lepidoptera: Pyralidae) populations. Environmental Ecology 25, 11401146.Google Scholar
Pavan, F., Floreani, C., Barro, P., Zandigiacomo, P. & Dalla Monta, L. (2010). Influence of generation and photoperiod on larval development of Lobesia botrana. Environmental Entomology 39, 16521658.Google Scholar
Pearson, R. G. & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361371.CrossRefGoogle Scholar
Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34, 102117.Google Scholar
Porter, J. H., Parry, M. L. & Carter, T. R. (1991). The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology 57, 221240.Google Scholar
Rafoss, T. & Sæthre, M. G. (2003). Spatial and temporal distribution of bioclimatic potential for the codling moth and the Colorado potato beetle in Norway: model predictions versus climate and field data from the 1990s. Agricultural and Forest Entomology 5, 7585.Google Scholar
Robinet, C. & Roques, A. (2010). Direct impacts of recent climate warming on insect populations. Integrative Zoology 5, 132142.Google Scholar
Sæthre, M. G. & Edland, T. (2001). Distribution of the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae) in southern Norway. Norwegian Journal of Entomology 48, 251262.Google Scholar
Sæthre, M. G. & Hofsvang, T. (2002). Effect of temperature on oviposition behavior, fecundity, and fertility in two northern European populations of the codling moth (Lepidoptera: Tortricidae). Environmental Entomology 31, 804815.Google Scholar
Stará, J., Falta, V., Zichová, T., Ouředníčková, J. & Kocourek, F. (2009). Virus Granulózy Obaleče Jablečného v Integrované a Organické Produkci. Metodika pro praxi. Prague: Výzkumný ústav rostlinné výroby, v.v.i.Google Scholar
Sutherst, R. W. (2000 a). Climate change and invasive species – a conceptual framework. In Invasive Species in a Changing World (Eds Mooney, H. A. & Hobbs, R. J.), pp. 211240. Washington, DC: Island Press.Google Scholar
Sutherst, R. W. (2000 b). Climate variability, seasonal forecasting and invertebrate pests – the need for a synoptic view. In Applications of Seasonal Climate Forecasting in Agricultural and Natural Ecosystems. The Australian Experience (Eds Hammer, G. L., Nicholls, N. & Mitchell, C.), pp. 381397. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Sutherst, R. W. (2003). Prediction of species geographical ranges. Journal of Biogeography 30, 805816.Google Scholar
Sutherst, R. W. & Maywald, G. F. (1985). A computerised system for matching climates in ecology. Agriculture, Ecosystems and Environment 13, 281299.Google Scholar
Sutherst, R. W., Maywald, G. F., Bottomley, W. & Bourne, A. (2004). CLIMEX v2: User's Guide. Queensland, Australia: CSIRO Publishing.Google Scholar
Svobodová, E., Trnka, M., Žalud, Z., Semerádová, D., Dubrovský, M. & Šefrová, H. (2011). Estimation of the change in the harmfulness of selected pests in expected climate – European area. In 10th EMS/8th ECAC, 13–17 September 2010, Zurich, Switzerland. Annual Meeting Abstracts. [CD-ROM]. Berlin: European Meteorological Society.Google Scholar
Trnka, M., Dubrovský, M. & Žalud, Z. (2004). Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Climatic Change 64, 227255.CrossRefGoogle Scholar
Trnka, M., Muška, F., Semerádová, D., Dubrovský, M., Kocmánková, E. & Žalud, Z. (2007). European corn borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecological Modelling 207, 6184.Google Scholar
Tubiello, F. N., Soussana, J. F. & Howden, S. M. (2007). Climate change and food security special feature: crop and pasture response to climate change. Proceedings of the National Academy of Sciences of the United States of America 104, 1968619690.Google Scholar
Ulrichs, C. & Hopper, C. K. R. (2008). Predicting insect distributions from climate and habitat data. Biological Control 53, 881894.Google Scholar
Varela, L. G., Smith, R. J., Cooper, M. L. & Hoenish, R. W. (2010). European grapevine moth, Lobesia botrana, in Napa Valley vineyards. Practical Winery and Vineyard Journal March/April 2010, 15. Available from: http://www.practicalwinery.com/marapr10/moth1.htm (verified May 2011).Google Scholar
Wearing, C. H., Hansen, J. D., Whyte, C., Miller, C. E. & Brown, J. (2001). The potential for spread of codling moth (Lepidoptera: Tortricidae) via commercial sweet cherry fruit: a critical review and risk assessment. Crop Protection 20, 465488.Google Scholar