Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T20:27:26.324Z Has data issue: false hasContentIssue false

Carbohydrate remobilization from storage root to leaves after a stress release in sugar beet (Beta vulgaris L.): experimental and modelling approaches

Published online by Cambridge University Press:  01 July 2009

M. LAUNAY*
Affiliation:
Unite Agroclim, Institut National de Recherche Agronomique (INRA), Site Agroparc, 84914 Avignon Cedex 9, France
A.-I. GRAUX
Affiliation:
Unite UNREP, INRA, Site de Crouël, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France
N. BRISSON
Affiliation:
Unite Agroclim, Institut National de Recherche Agronomique (INRA), Site Agroparc, 84914 Avignon Cedex 9, France
M. GUERIF
Affiliation:
Unite EMMAH, INRA, Site Agroparc, 84914 Avignon Cedex 9, France
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Carbohydrate remobilization from the sugar beet storage root to support leaf regrowth after release from water stress was demonstrated by experimental and modelling approaches. Experimental trials were carried out in northern France in 1994 and 1995 and in southern France in 2005, in conditions that involved a succession of soil moisture stresses and re-hydrations. Drought stress slowed leaf growth and the subsequent release of stress resulted in regrowth. A second trial showed that after total defoliation, sugar beet was able to produce new leaves. It was assumed that this leaf renewal, observed at drought stress release or after defoliation, relied on the possibility of remobilizing carbohydrates from storage roots to above-ground organs. This assumption was tested through a heuristic modelling approach, involving the STICS crop model and its existing sub-model on remobilization. The relevance of these formalizations for sugar beet was tested on the experimental data to validate the plant behaviour concerning remobilization. The model succeeded in reproducing leaf area index (LAI) dynamic trends and particularly leaf re-growth after drought stress release or defoliation, despite an over-estimation of the drought stress effect involving an inaccurate simulation of the changes in LAI. Nevertheless, the model's ability to forecast accurately above-ground and storage root dry weight, as well as trends in LAI dynamics, showed that the assumptions made about remobilization were able to explain sugar beet behaviour.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asseng, S. & Van Herwaarden, A. F. (2003). Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant and Soil 256, 217229.CrossRefGoogle Scholar
Baret, F., Houlès, V. & Guérif, M. (2007). Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. Journal of Experimental Botany 58, 869880.CrossRefGoogle ScholarPubMed
Bertin, N. & Gary, C. (1993). Evaluation of TOMGRO, a dynamic model of growth and development of tomato (Lycospersicon esculentum Mill) at various levels of assimilate supply and demand. Agronomie 13, 395405.CrossRefGoogle Scholar
Boote, K. J., Jones, J. W., Mishoe, J. W. & Berger, R. D. (1983). Coupling pests to crop growth simulators to predict yield reductions. Phytopathology 73, 15811587.CrossRefGoogle Scholar
Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussiere, F., Cabidoche, Y. M., Cellier, P., Debaeke, P., Gaudillere, J. P., Henault, C., Maraux, F., Seguin, B. & Sinoquet, H. (2003). An overview of the crop model STICS. European Journal of Agronomy 18, 309332.CrossRefGoogle Scholar
Brisson, N., Launay, M., Mary, B. & Beaudoin, N. (2009). Conceptual Basis, Formalisations and Parameterization of the STICS Crop Model. Paris: QUAE.Google Scholar
Ceotto, E., Guérif, M. & Duke, C. L. (1999). Evaluation of the model SUCROS2 for simulating sugar beet growth and production in water limited conditions in Northern France. In Modelling Cropping Systems: Proceedings of an International Symposium, 21–23 June 1999, Lleida, Spain (Eds Donatelli, M., Stockle, C., Villalobos, F. & Villar Mir, J. M.), pp. 157158. Thiverval Grignon, France: ESA.Google Scholar
Cheng, L. L., Xia, G. H. & Bates, T. (2004). Growth and fruiting of young ‘Concord’ grapevines in relation to reserve nitrogen and carbohydrates. Journal of the American Society for Horticultural Science 129, 660666.CrossRefGoogle Scholar
Dordas, C. A. & Sioulas, C. (2009). Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Research 110, 3543.CrossRefGoogle Scholar
Ebrahim, M. K. H. (2005). Amelioration of sucrose-metabolism and yield changes, in storage roots of NaCl-stressed sugarbeet, by ascorbic acid. Agrochimica 49, 93–103.Google Scholar
El Omari, B., Aranda, X., Verdaguer, D., Pascual, G. & Fleck, I. (2003). Resource remobilization in Quercus ilex L. resprouts. Plant and Soil 252, 349357.CrossRefGoogle Scholar
FAO. (2006). World Reference Base for Soil Resources. A Framework for International Classification, Correlation and Communication. Rome, Italy: FAO. Available online at: http://www.fao.org/ag/agl/agll/wrb/doc/wrb2006final.pdf (verified 2 June 2009).Google Scholar
Frankow-Lindberg, B. E. (2001). Adaptation to winter stress in nine white clover populations: changes in non-structural carbohydrates during exposure to simulated winter conditions and ‘spring’ regrowth potential. Annals of Botany 88, 745751.CrossRefGoogle Scholar
Gordon, A. J., Ryle, G. J. A., Mitchell, D. F., Lowry, K. H. & Powell, C. E. (1986). Effects of defoliation on carbohydrate, protein and leghaemoglobin content of white clover nodules. Annals of Botany 58, 141154.CrossRefGoogle Scholar
Guérif, M., Machet, J. M. & Droulin, J. F. (1995). Utilisation de la télédétection pour caractériser le statut azoté des cultures de betteraves sucrières. In Proceedings of the 58th International Institute for Beet Research Congress, 20 June 1995, Beaune, France, pp. 551556. Brussels, Belgium: IIRB.Google Scholar
Launay, M. & Brisson, N. (2004). STICS adaptability to a novel crop as an application of modularity in crop modelling: example of sugar beet. In VIII ESA Congress: European Agriculture in a Global Context (Eds Jacobsen, S. E., Jensen, C. R. & Porter, J. R.), pp. 283286. Copenhagen, Denmark: ESA.Google Scholar
Launay, M. & Guerif, M. (2003). Ability for a model to predict crop production variability at the regional scale: an evaluation for sugar beet. Agronomie 23, 135146.CrossRefGoogle Scholar
Lawson, A. R., Kelly, K. B. & Sale, P. W. G. (2000). Defoliation frequency and cultivar effects on the storage and utilisation of stolon and root reserves in white clover. Australian Journal of Agricultural Research 51, 10391046.CrossRefGoogle Scholar
Lemaire, G. & Meynard, J. M. (1997). Use of the nitrogen nutrition index for the analysis of agronomical data. In Diagnosis of the Nitrogen Status in Crops (Ed. Lemaire, G.), pp. 4555. Heidelberg, Germany: Springler-Verlag.CrossRefGoogle Scholar
McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holzworth, D. P. & Freebairn, D. M. (1996). APSIM: a novel software system for model development, model testing, and simulation in agricultural systems research. Agricultural Systems 50, 255271.CrossRefGoogle Scholar
Milford, G. F. J., Pocock, T. O. & Riley, J. (1985). An analysis of leaf growth in sugar beet. II. Leaf appearance in field crops. Annals of Applied Biology 106, 173185.CrossRefGoogle Scholar
Monti, A., Brugnoli, E., Scartazza, A. & Amaducci, M. T. (2006). The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). Journal of Experimental Botany 57, 12531262.CrossRefGoogle ScholarPubMed
Nelder, J. A. & Mead, R. (1965). A simplex method for function minimization. The Computer Journal 7, 308313.CrossRefGoogle Scholar
Owen, P. C. & Watson, D. J. (1956). Effect on crop growth of rain after prolonged drought. Nature 177, 847.CrossRefGoogle Scholar
Papakosta, D. K. & Gagianas, A. A. (1991). Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agronomy Journal 83, 864870.CrossRefGoogle Scholar
Perata, P., Poggiolini, S., Poggi, A., Meriggi, P. & Ribeyre, C. (2004). Accumulation of sucrose in roots related to beet canopy growth in the Po Valley (North-East Italy). In 67th IIRB Congress, 11–12 February 2004, Brussels, Belgium. pp. 7582. Brussels, Belgium: IIRB.Google Scholar
Probert, M. E., Keating, B. A., Thompson, J. P. & Parton, W. J. (1995). Modelling water, nitrogen, and crop yield for a long-term fallow management experiment. Australian Journal of Experimental Agriculture 35, 941950.CrossRefGoogle Scholar
Rossi, A., Meriggi, P., Biancardi, E. & Rosso, F. (2000). Effect of Cercospora leaf spot on sugar beet growth, yield and quality. In Proceedings of the 63rd IIRB Congress, 9–10 February 2000, Interlaken, Switzerland, pp. 4976. Brussels, Belgium: IIRB.Google Scholar
Royo, C., Voltas, J. & Romagosa, I. (1999). Remobilization of pre-anthesis assimilates to the grain for grain only and dual-purpose (forage and grain) triticale. Agronomy Journal 91, 312316.CrossRefGoogle Scholar
Rubino, P., Cantore, V. & Mastro, M. A. (1999). Study of water use efficiency of some herbaceous species in an area of southern Italy. Rivista di Irrigazione e Drenagio 46, 3946.Google Scholar
Sakai, A. & Sakai, S. (1998). A test for the resource remobilization hypothesis: Tree sprouting using carbohydrates from above-ground parts. Annals of Botany 82, 213216.CrossRefGoogle Scholar
Schapendonk, A. H. C. M., Stol, W., Van Kraalingen, D. W. G. & Bouman, B. A. M. (1998). LINGRA, a sink/source model to simulate grassland productivity in Europe. European Journal of Agronomy 9, 87–100.CrossRefGoogle Scholar
Scott, R. K. & Jaggard, K. W. (1993). An analysis of the efficiency of the sugar beet crop in exploiting the environment. Journal of Sugar Beet Research 30, 3756.CrossRefGoogle Scholar
Smit, A. B. & Struik, P. C. (1995). The first step towards a decision-support system for sugar beet growing: selection of a basic growth model. Journal of Agronomy and Crop Science 175, 213220.CrossRefGoogle Scholar
Spitters, C. J. T. & Schapendonk, A. H. C. M. (1990). Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant and Soil 123, 193203.CrossRefGoogle Scholar
Spitters, C. J. T., Van Keulen, H. & Van Kraalingen, D. W. G. (1989). A simple and universal crop growth simulator: SUCROS87. In Simulation and System Management in Crop Protection (Eds Rabbinge, R., Ward, S. A. & van Laar, H. H.), pp. 147181. Simulation Monographs 32. Wageningen: Pudoc.Google Scholar
S-Plus (2001). S-PLUS 6 for Windows, Guide to Statistics. Vol. 1. Seattle, WA: Insightful Corporation.Google Scholar
Subbarao, G. V., Nam, N. H., Chauhan, Y. S. & Johansen, C. (2000). Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits. Journal of Plant Physiology 157, 651659.CrossRefGoogle Scholar
Tahir, I. S. A., Nakata, N. & Yamaguchi, T. (2005). Responses of three wheat genotypes to high soil temperature during grain filling. Plant Production Science 8, 192198.CrossRefGoogle Scholar
Teng, Y. W., Tanabe, K., Tamura, F. & Itai, A. (1999). Translocation of C-13-assimilates in the spring following fall assimilation of (CO2)-C-13 by ‘Nijisseiki’ pear (Pyrus pyrifolia Nakai). Journal of the Japanese Society for Horticultural Science 68, 248255.CrossRefGoogle Scholar
Varlet-Grancher, C., Gosse, G., Chartier, M., Sinoquet, H., Bonhomme, R. & Allirand, J.-M. (1989). Mise au point: rayonnement solaire absorbé ou intercepté par un couvert végétal. Agronomie 9, 419439.CrossRefGoogle Scholar
Vizoso, S., Gerant, D., Guehl, J. M., Joffre, R., Chalot, M., Gross, P. & Maillard, P. (2008). Do elevation of CO2 concentration and nitrogen fertilization alter storage and remobilization of carbon and nitrogen in pedunculate oak saplings? Tree Physiology 28, 17291739.CrossRefGoogle ScholarPubMed
Volenec, J. J., Ourry, A. & Joern, B. C. (1996). A role for nitrogen reserves in forage regrowth and stress tolerance. Physiological Plantarum 97, 185193.CrossRefGoogle Scholar
Webb, C. R., Werker, A. R. & Gilligan, C. A. (1997). Modelling the dynamical components of the sugar beet crop. Annals of Botany 80, 427436.CrossRefGoogle Scholar
Wong, B. L., Baggett, K. L. & Rye, A. H. (2003). Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum). Canadian Journal of Botany-Revue Canadienne De Botanique 81, 780788.Google Scholar
Yang, J. C., Zhang, J. H., Wang, Z. Q., Zhu, Q. S. & Liu, L. J. (2004). Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta 220, 331343.CrossRefGoogle ScholarPubMed