Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T01:54:25.098Z Has data issue: false hasContentIssue false

The availability of iron in certain grass, clover and herb species. I. Perennial ryegrass, cocksfoot and timothy

Published online by Cambridge University Press:  27 March 2009

A. Thompson
Affiliation:
King's College (Newcastle upon Tyne), University of Durham
A. M. Raven
Affiliation:
King's College (Newcastle upon Tyne), University of Durham

Extract

1. The availability of iron in three species of grass has been investigated using the rat as the experimental animal.

2. Two procedures, namely, the increase in blood haemoglobin concentration, and the gain in total gramme of haemoglobin by nutritionally anaemic rats were employed.

3. Inorganic iron, as ferric chloride, was shown to be significantly more available than the iron contained in the three grasses.

4. The iron in the grass timothy was found to be significantly more available than that in ryegrass or cocksfoot.

5. Possible reasons for the differences in iron availability were discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, H. D., Mcdonough, K. B. & Elvehjem, C. A. (1940). J. Lab. Clin. Med. 25, 464.Google Scholar
Armstrong, R. H. & Thomas, B. (1950). Brit. J. Nutr. 4. 166.Google Scholar
Ascham, L., Speirs, M. & Maddox, D. (1938). J. Nutr. 16, 425.Google Scholar
Ascham, L., Speirs, M. & Maddox, D. (1939). Science, 90, 596.CrossRefGoogle Scholar
Berlin, N. I., van Dyke, D. C., Siri, W. E. & Williams, C. P. (1950). Endocrinology, 47, 429.Google Scholar
Bing, F. C., Saurwein, E. M. & Myers, V. C. (1934). J. Biol. Chem. 105, 343.Google Scholar
Cartland, G. F. & Koch, C. (1928). Amer. J. Physiol. 85, 540.CrossRefGoogle Scholar
Chase, M. S., Gubler, C. T., Cartwright, G. E. & Wintrobe, M. M. (1952). Fed. Proc. 11, 438.Google Scholar
Chisholm, R. A. (1911). Quart. J. Physiol. 4, 207.Google Scholar
Clegg, J. W. & King, E. J. (1942). Brit. Med. J. ii, 329.Google Scholar
Copp, D. H. & Greenberg, D. M. (1946). J. Biol. Chem. 164, 377–87, 389401.CrossRefGoogle Scholar
Elvehjem, C. A. (1932). J. Biol. Chem. 98, 1047.Google Scholar
Elvehjem, C. A., Hart, E. B. & Sherman, W. C. (1933). J. Biol. Chem. 103, 61.Google Scholar
Elvehjem, C. A. & Kemmerer, A. R. (1931). J. Biol. Chem. 93, 189.CrossRefGoogle Scholar
Elvehjem, C. A. & Sherman, W. C. (1932). J. Biol. Chem. 98, 309.Google Scholar
Free, A. H. & Bing, F. C. (1936). Proc. Soc. Exp. Biol., N.Y., 35, 453.CrossRefGoogle Scholar
Free, A. H. & Bing, F. C. (1940). J. Nutr. 19, 446–60, 569–78.Google Scholar
Freeman, S. & Burrill, M. W. (with Griesser, M.) (1945). J. Nutr. 30, 293.CrossRefGoogle Scholar
Freeman, S. & Ivy, A. C. (1942). Amer. J. Physiol. 137, 7O6.Google Scholar
Gemzell, C. A. & Sjöstrand, T. (1954). Acta physiol. scand. 30, 369.Google Scholar
Groen, J., van den Broek, W. A. & Veldman, H. (1947). Biochim. biophys. Acta, 1, 315.Google Scholar
Hahn, P. F., Bale, W. F., Hettig, R. A., Kamen, M. D. & Whipple, G. H. (1938). J. Exp. Med. 70, 443.Google Scholar
Hahn, P. F., Bale, W. F., Lawrence, E. O. & Whipple, G. H. (1939). J. Exp. Med. 69, 739.CrossRefGoogle Scholar
Hahn, P. F. & Whipple, G. H. (1938). J. Exp. Med. 67, 259.Google Scholar
Hansard, S. L., Butler, W. O., Comar, C. L. & Hobbs, C. S. (1953). J. Anim. Sci. 12, 402.CrossRefGoogle Scholar
Harris, R. S., Mosher, L. M. & Bunker, J. W. M. (1939). Amer. J. Dig. Dis. 6, 459.Google Scholar
Hawkins, W. B. & Hahn, P. F. (1944). J. Exp. Med. 80, 31.Google Scholar
Henesy, G. & Hahn, L. (1940). K. danske vidensk. Selsk. (Biol. Medd.), 15, 5.Google Scholar
Henry, K. M. & Kon, S. K. (1937). Milk and Nutrition, Pt. 1, p. 9. Reading: Nat. Inst. Res. Dairying.Google Scholar
Henry, K. M., Kon, S. K. & Watson, M. B. (1937). Milk and Nutrition, Pt. 1, p. 37. Reading: Nat. Inst. Res. Dairying.Google Scholar
Hill, H. R. (1930). Proc. Roy. Soc. B, 107, 205.Google Scholar
Hubbell, H. J. & Rose, M. S. (1937). J. Nutr. 15, 91.Google Scholar
Keith, M. M., Rowntree, L. G. & Geraghty, J. T. (1915). Arch. Int. Med. 16, 547.Google Scholar
Kemmerer, A. R., Elvehjem, C. A., Hart, E. B. & Fargo, J. M. (1932). Amer. J. Physiol. 102, 319.CrossRefGoogle Scholar
Kletzien, S. W. (1938). J. Nutr. 15, 16.Google Scholar
Kletzien, S. W. (1940). J. Nutr. 19, 187.Google Scholar
Lintzel, W. (1931). Ergebn. d. Physiol. 31, 844.Google Scholar
Little, A. G. Jnr., Power, M. H. & Wakefield, E. G. (1945). Ann. Intern. Med. 23, 627.Google Scholar
Lucas, G. H. W. & Summerfeldt, P. (1939). Canad. Med. Ass. J. 40, 588.Google Scholar
McCance, R. A. & Widdowson, E. M. (1937). Lancet, ii, 680.Google Scholar
McCance, R. A., Edgecomb, C. N. & Widdowson, E. M. (1943). Lancet, ii, 126.Google Scholar
McCance, R. A. & Widdowson, E. M. (1943). Nature, Lond., 152, 326.CrossRefGoogle Scholar
Miller, C. D. & Louis, L. (1945). J. Nutr. 30, 485.CrossRefGoogle Scholar
Mitchell, H. H. & Hamilton, T. S. (1949). J. Biol. Chem. 178, 345.Google Scholar
Mitchell, H. S. & Schmidt, L. (1226). J. Biol. Chem. 70, 471.CrossRefGoogle Scholar
Myers, V. C., Remp, D. G. & Bing, F. C. (1935). Cereal Chem. 12, 372.Google Scholar
Nakamura, F. I. & Mitchell, H. H. (1943). J. Nutr. 25, 39.Google Scholar
Oyenuga, V. A. (1951). Unpublished data towards Thesis for Ph.D. in Agricultural Chemistry, University of Durham.Google Scholar
Parker, W. E. & Griffin, F. P. (1939). Canad. J. Res. 178, 66.Google Scholar
Pye, O. F. & Macleod, G. (1946). J. Nutr. 32, 677.Google Scholar
Remp, D. G. (1935). Doct. Diss., Western Reserve University, Cleveland, Ohio.Google Scholar
Rose, M. S. & Hubbell, H. J. (1938). J. Nutr. 15, 91.Google Scholar
Rose, M. S. & Kung, L. C. (1932). J. biol. Chem. 98, 417.CrossRefGoogle Scholar
Rose, M. S. & Vahlteich, E. M. (1932). J. Biol. Chem. 96, 593.Google Scholar
Rose, M. S., Vahlteich, E. M. & Macleod, G. (1934). J. Biol. Chem. 104, 217.Google Scholar
Sen, D. P. (1952 a). Ann. Biochem. 12, 54.Google Scholar
Sen, D. P. (1952 b). Ann. Biochem. 12, 103.Google Scholar
Sen, D. P. (1952 c). Ann. Biochem. 12, 2936, 5962, 6774.Google Scholar
Sharpe, L. M., Harris, R. S., Peacock, W. D. & Cooke, R. C. (1948). Fed. Proc. 7, 298.Google Scholar
Sherman, W. C., Elvehjem, C. A. & Hart, E. B. (1934 a). J. Biol. Chem. 107, 383.Google Scholar
Sherman, W. C., Elvehjem, C. A. & Hart, E. B. (1934 b). J. Biol. Chem. 107, 289.Google Scholar
Smith, M. C. & Otis, L. (1937 a). J. Nutr. 13, 573.CrossRefGoogle Scholar
Smith, M. C. & Otis, L. (1937 b). Science, 85, 125.Google Scholar
Smith, M. C. & Otis, L. (1940). Science, 91, 146.Google Scholar
Stewart, W. B., Snowman, B. T., Yuile, C. L. & Whipple, G. H. (1950). Proc. Soc. Exp. Biol., N.Y.., 73, 473.Google Scholar
Street, H. R. (1943). J. Nutr. 26, 187.Google Scholar
Thomas, B., Thompson, A., Oyenuga, V. A. & Armstrong, R. H. (1952). Emp. J. Exp. Agric. 20, 10.Google Scholar
Tompsett, S. L. (1940). Biockem. J. 34, 961.Google Scholar
Underwood, E. J. (1938). J. Nutr. 16, 299.Google Scholar
Vahlteich, E. M., Rose, M. S. & Macleod, G. (1936). J. Nutr. 11, 31.Google Scholar
Wallbach, G. (1936). Folia haemat., Lpz., 54, 201.Google Scholar
Widdowson, E. M. & McCance, R. A. (1944). Proc. Nutr. Soc. 1, 220.Google Scholar
Widdowson, E. M. & McCance, R. A. (1948). Biochem. J. 42, 577.Google Scholar