Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T16:44:54.523Z Has data issue: false hasContentIssue false

The APETALA2/ethylene-responsive factor transcription factor OsDERF2 negatively modulates drought stress in rice by repressing abscisic acid responsive genes

Published online by Cambridge University Press:  13 February 2017

Y. GUO
Affiliation:
College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
R. HUANG
Affiliation:
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
L. DUAN*
Affiliation:
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
J. WANG*
Affiliation:
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
*
*To whom all correspondence should be addressed. Emails: [email protected] and [email protected]
*To whom all correspondence should be addressed. Emails: [email protected] and [email protected]

Summary

APETALA2/ethylene-responsive factor (AP2/ERF) family transcription factors play a vital role in plant growth and in response to hormones and abiotic stresses. In the current research, it is reported that OsDERF2, one of the drought-responsive ERF, is a member of the DREB sub-family. OsDERF2 is a nuclear-localized protein and has transcriptional activity in yeast. Expression of OsDERF2 was induced by drought and inhibited by abscisic acid (ABA). However, OsDERF2 RNA interference (RNAi) knock-down transgenic lines enhanced tolerance to drought stress at seedling stage and were much more sensitive to ABA treatment, which may result from the increased ABA level in vivo. The basic leucine zipper (bZIP) transcription factor family plays an important role in the ABA signalling pathway of abiotic stress. Quantitative real-time polymerase chain reaction analysis revealed that the bZIP family gene OsbZIP20 and ABA-response gene OsABA45 were up-regulated 25 times and 120 times, respectively, in OsDERF2 RNAi knock-down lines under drought stress, which were up-regulated five and seven times in wild type under drought stress. The current data reveal that OsDERF2 negatively modulates drought stress response in an ABA-mediated pathway through regulating gene expression of other ABA-response transcription factors.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agarwal, P. K., Agarwal, P., Reddy, M. K. & Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports 25, 12631274.Google Scholar
Amir Hossain, M., Lee, Y., Cho, J. I., Ahn, C. H., Lee, S. K., Jeon, J. S., Kang, H., Lee, C. H., An, G. & Park, P. B. (2010). The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Molecular Biology 72, 557566.CrossRefGoogle ScholarPubMed
Cuming, A. C., Cho, S. H., Kamisugi, Y., Graham, H. & Quatrano, R. S. (2007). Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens . New Phytologist 176, 275287.CrossRefGoogle ScholarPubMed
Dey, S. & Corina Vlot, A. (2015). Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Frontiers in Plant Science 6, 640. doi: 10.3389/fpls.2015.00640 CrossRefGoogle ScholarPubMed
Ding, Y., Wang, X., Su, L., Zhai, J., Cao, S., Zhang, D., Liu, C., Bi, Y., Qian, Q., Cheng, Z., Chu, C. & Cao, X. (2007). SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19, 922.CrossRefGoogle ScholarPubMed
Do, P. T., Drechsel, O., Heyer, A. G., Hincha, D. K. & Zuther, E. (2014). Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. Frontiers in Plant Science 5, 182. doi: 10.3389/fpls.2014.00182 Google Scholar
Fukao, T., Yeung, E. & Bailey-Serres, J. (2011). The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23, 412427.CrossRefGoogle ScholarPubMed
Hadiarto, T. & Tran, L. S. P. (2011). Progress studies of drought-responsive genes in rice. Plant Cell Reports 30, 297310.Google Scholar
Izawa, T., Foster, R., Nakajima, M., Shimamoto, K. & Chua, N. H. (1994). The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development. Plant Cell 6, 12771287.Google ScholarPubMed
Joo, J., Choi, H. J., Lee, Y. H., Kim, Y. K. & Song, S. I. (2013). A transcriptional repressor of the ERF family confers drought tolerance to rice and regulates genes preferentially located on chromosome 11. Planta 238, 155170.CrossRefGoogle ScholarPubMed
Kim, N., Moon, S. J., Min, M. K., Choi, E. H., Kim, J. A., Koh, E. Y., Yoon, I., Byun, M. O., Yoo, S. D. & Kim, B. G. (2015). Functional characterization and reconstitution of ABA signaling components using transient gene expression in rice protoplasts. Frontiers in Plant Science 6, 614. doi: 10.3389/fpls.2015.00614 CrossRefGoogle ScholarPubMed
Lata, C., Bhutty, S., Bahadur, R. P., Majee, M. & Prasad, M. (2011). Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. Journal of Experimental Botany 62, 33873401.Google Scholar
Li, C. W., Su, R. C., Cheng, C. P., Sanjaya, , You, S. J., Hsieh, T. H., Chao, T. C. & Chan, M. T. (2011 a). Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiology 156, 213227.Google Scholar
Li, Z., Zhang, L., Yu, Y., Quan, R., Zhang, Z., Zhang, H. & Huang, R. (2011 b). The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis . Plant Journal 68, 8899.CrossRefGoogle ScholarPubMed
Licausi, F., Ohme-Takagi, M. & Perata, P. (2013). APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist 199, 639649.CrossRefGoogle ScholarPubMed
Lim, S. D., Lee, C. & Jang, C. S. (2014). The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis . Plant, Cell & Environment 37, 10971113.Google Scholar
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis . Plant Cell 10, 13911406.CrossRefGoogle ScholarPubMed
Liu, C., Mao, B., Ou, S., Wang, W., Liu, L., Wu, Y., Chu, C. & Wang, X. (2014). OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology 84, 1936.Google Scholar
Lu, G., Gao, C., Zheng, X. & Han, B. (2009). Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229, 605615.Google Scholar
Madhava Rao, K. V. & Sresty, T. V. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science 157, 113128.CrossRefGoogle Scholar
Mizoi, J., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA) – Gene Regulatory Mechanisms 1819, 8696.Google Scholar
Nakashima, K., Shinwari, Z. K., Sakuma, Y., Seki, M., Miura, S., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2000). Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Molecular Biology 42, 657665.Google Scholar
Oono, Y., Yazawa, T., Kawahara, Y., Kanamori, H., Kobayashi, F., Sasaki, H., Mori, S., Wu, J., Handa, H., Itoh, T. & Matsumoto, T. (2014). Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS ONE 9(5), e96946. doi: 10.1371/journal.pone.0096946 Google Scholar
Pan, X., Welti, R. & Wang, X. (2010). Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols 5, 986992.Google Scholar
Rashid, M., Guangyuan, H., Guangxiao, Y., Hussain, J. & Xu, Y. (2012). AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evolutionary Bioinformatics Online 8(8), 321355.Google ScholarPubMed
Shi, L., Guo, M., Ye, N., Liu, Y., Liu, R., Xia, Y., Cui, S. & Zhang, J. (2015). Reduced ABA accumulation in the root system is caused by ABA exudation in upland rice (Oryza sativa L. var. Gaoshan1) and this enhanced drought adaptation. Plant Cell Physiology 56, 951964.Google Scholar
Song, C. P., Agarwal, M., Ohta, M., Guo, Y., Halfter, U., Wang, P. & Zhu, J. K. (2005). Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17, 23842396.Google Scholar
Tang, N., Zhang, H., Li, X., Xiao, J. & Xiong, L. (2012). Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiology 158, 17551768.CrossRefGoogle ScholarPubMed
Verslues, P. E. & Bray, E. A. (2006). Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany 57, 201212.Google Scholar
Wan, L., Zhang, J., Zhang, H., Zhang, Z., Quan, R., Zhou, S. & Huang, R. (2011). Transcriptional activation of OsDERF1 in OsERF3 and OsAP2–39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS ONE 6(9), e25216. doi: 10.1371/journal.pone.0025216 Google Scholar
Wang, D., Pan, Y., Zhao, X., Zhu, L., Fu, B. & Li, Z. (2011). Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics 12, 149. doi: 10.1186/1471-2164-12-149 Google Scholar
Wei, S., Hu, W., Deng, X., Zhang, Y., Liu, X., Zhao, X., Luo, Q., Jin, Z., Li, Y., Zhou, S., Sun, T., Wang, L., Yang, G. & He, G. (2014). A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biology 14, 133. doi: 10.1186/1471-2229-14-133 Google Scholar
Xiang, Y., Tang, N., Du, H., Ye, H. & Xiong, L. (2008). Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology 148, 19381952.CrossRefGoogle ScholarPubMed
Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C. & Mackill, D. J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705708.Google Scholar
Yang, T. & Poovaiah, B. W. (2002). A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. Journal of Biological Chemistry 277(47), 4504945058.Google Scholar
Yu, Z. X., Li, J. X., Yang, C. Q., Hu, W. L., Wang, L. J. & Chen, X. Y. (2012). The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Molecular Plant 5, 353365.Google Scholar
Zhang, Z., Wang, J., Zhang, R. & Huang, R. (2012). The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis . Plant Journal 71, 273287.CrossRefGoogle ScholarPubMed
Zhang, H., Zhang, J., Quan, R., Pan, X., Wan, L. & Huang, R. (2013). EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237, 14431451.Google Scholar
Zou, M., Guan, Y., Ren, H., Zhang, F. & Chen, F. (2008). A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Molecular Biology 66, 675683.Google Scholar