Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T04:56:42.507Z Has data issue: false hasContentIssue false

Winter survival of pea, faba bean and white lupin cultivars in contrasting Italian locations and sowing times, and implications for selection

Published online by Cambridge University Press:  11 July 2007

P. ANNICCHIARICO*
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA) – Istituto Sperimentale per le Colture Foraggere, viale Piacenza 29, 26900Lodi, Italy
A. IANNUCCI
Affiliation:
CRA – Istituto Sperimentale per le Colture Foraggere, via Napoli 52, 71100 Foggia, Italy
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Increasing grain legume yields via autumn sowing requires winter-hardy material. Forty-nine pea, 24 faba bean and 11 white lupin cultivars recently released by 29 breeding institutions worldwide were sown in autumn 2002 at Lodi (northern Italy) and Foggia (southern Italy) on two different dates at each location, with the objective of assessing the winter survival of species and cultivars, its consistency across locations and sowing times, its relationship with grain yield and various morphophysiological traits and the implications for selection. The winter seasons were representative for the sites and had 54 frost days and −7·3°C absolute minimum temperature in Lodi, and 8 frost days and −3·4°C absolute minimum temperature in Foggia. The species differed in optimal sowing time at each location. Mild winter temperatures, preventing a sufficient hardening against late frosts, led to higher proportions of plants killed over winter in Foggia than in Lodi (0·17 v. 0·12 for pea; 0·20 v. 0·16 for faba bean; 0·34 v. 0·11 for lupin). Variation in winter mortality was much larger within species than among species. Winter mortality and grain yield of cultivars were inversely correlated (r=−0·49, −0·43 and −0·74 for entry means over locations of pea, faba bean and lupin, respectively). The consistency across environments of genotype winter mortality, estimated by genetic correlations, was high across sowing times and low across locations for faba bean, moderate across sowing times and fairly low across locations for pea, and always fairly high for lupin. A visual cold tolerance score was always related to better winter survival. Winter survival tended to correlate with larger seeds in faba bean and lupin, and was associated with later flowering in lupin. A rosette-like winter growth habit (defined by lower height/number of leaves ratio of seedlings in January) was correlated with winter survival in all species (after partialling out the influence of seed size in faba bean and lupin). The optimal index of indirect selection for low winter mortality included the cold tolerance score, the seedling height/number of leaves ratio and the seed size for faba bean, the first two of these variables for pea, but only the first variable for lupin. The gain in predicted efficiency over direct selection was high for faba bean (29%) and modest for pea and lupin (⩽10%).

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annicchiarico, P. & Pecetti, L. (1998). Yield vs. morphophysiological trait-based criteria for selection of durum wheat in a semi-arid Mediterranean region (northern Syria). Field Crops Research 59, 163173.CrossRefGoogle Scholar
Austin, R. B. & MacLean, M. S. M. (1972). A method for screening Phaseolus genotypes for tolerance to low temperatures. Journal of Horticultural Science and Biotechnology 47, 279290.CrossRefGoogle Scholar
Bourion, V., Lejeune-Hènaut, I., Munier-Jolain, N. & Salon, C. (2003). Cold acclimation of winter and spring pea: carbon partitioning as affected by light intensity. European Journal of Agronomy 19, 535548.CrossRefGoogle Scholar
Burdon, R. D. (1977). Genetic correlation as a concept for studying genotype-environment interaction in forest tree breeding. Silvae Genetica 26, 168175.Google Scholar
Davies, D. R. (1993). The pea crop. In Peas: Genetics, Molecular Biology and Biotechnology (Eds Casey, R. & Davies, D. R.), pp. 112. Wallingford, UK: CAB International.Google Scholar
Etévé, G. (1985). Breeding for cold tolerance and winter hardiness in pea. In The Pea Crop – A Basis for Improvement (Eds Hebblethwaite, P. D., Heath, M. C. & Dawkins, T. C. K.), pp. 131136. London: Butterworths.Google Scholar
Falconer, D. S. (1989). Introduction to Quantitative Genetics. 3rd edn. Harlow, UK: Longman.Google Scholar
Gomez, K. A. & Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. 2nd edn. New York: J. Wiley & Sons.Google Scholar
Harzic, N. (1996). Utilisation du nanisme pour l'amélioration du lupin blanc d'hiver. Ph.D. thesis, Institut National Agronomique, Paris-Grignon.Google Scholar
Herzog, H. (1988). Winter hardiness in faba beans: varietal differences and interrelations among selection criteria. Plant Breeding 101, 269276.CrossRefGoogle Scholar
Herzog, H. (1989). Influence of pre-hardening duration and dehardening temperatures on varietal freezing resistance in faba beans (Vicia faba L.). Agronomie 9, 5561.CrossRefGoogle Scholar
Huyghe, C. (1993). Growth of white lupin seedlings during the rosette stage as affected by seed size. Agronomie 13, 145153.CrossRefGoogle Scholar
Huyghe, C. (1997). White lupin (Lupinus albus L.). Field Crops Research 53, 147160.CrossRefGoogle Scholar
Huyghe, C. & Papineau, J. (1990). Winter development of autumn-sown white lupin: agronomic and breeding consequences. Agronomie 10, 709716.CrossRefGoogle Scholar
Lawes, D. A., Bond, D. A. & Poulsen, M. H. (1983). Classification, origin, breeding methods and objectives. In The Faba Bean (Vicia faba L.): A Basis for Improvement (Ed. Hebblethwaite, P. D.), pp. 2376. London: Butterworths.Google Scholar
Lejeune-Hénaut, I. & Wery, J. (1994). Influence du froid sur la survie des plantes. In Agrophysiologie du Pois Protéagineux. Applications à la Production Agricole (Eds Ney, B., Duchêne, E., Carrouée, B. & Angevin, F.), pp. 139144. Paris: Union Nationale Interprofessionnelle des Plantes Riches En Protéines (UNIP)/Institut Technique des Céréales et des Fourrages (ITCF)/INRA.Google Scholar
Lejeune-Hénaut, I., Bourion, V., Etévé, G., Cunot, G., Delhaye, K. & Desmyter, C. (1999). Floral initiation in field-grown forage peas is delayed to a greater extent by short photoperiods, than in other types of European varieties. Euphytica 109, 201211.CrossRefGoogle Scholar
McDonald, G. K., Adisarwanto, T. & Knight, R. (1994). Effect of time of sowing on flowering in faba bean (Vicia faba). Australian Journal of Experimental Agriculture 34, 395400.CrossRefGoogle Scholar
McKersie, B. D. & Leshem, Y. Y. (1994). Stress and Stress Coping in Cultivated Plants. Dordrecht, The Netherlands: Academic Publishers.CrossRefGoogle Scholar
Monotti, M., Stagnari, F., Conti, D., Petrini, A., Cappelli, S., Cocchiarella, A. G., Raggi, V., Gargano, E., Orfei, M. & Quattrucci, M. (2004). Valutazione di varietà di pisello proteico e di favino in ambienti centro-meridionali. L'Informatore Agrario 60, 6772.Google Scholar
Murray, G. A., Eser, D., Gusta, L. V. & Etévé, G. (1988). Winterhardiness in pea, lentil, faba bean and chickpea. In World Crops: Cool Season Food Legumes (Ed. Summerfield, R. J.), pp. 831843. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Papineau, J. & Huyghe, C. (2004). Le Lupin Doux Protéagineux. Paris, France: Editions France Agricole.Google Scholar
Perini, L., Beltrano, M. C., Dal Monte, G., Esposito, S., Caruso, T., Motisi, A. & Marra, F. P. (2004). Atlante Agroclimatico – Agroclimatologia, Pedologia, Fenologia del Territorio Italiano. Rome: Ufficio Centrale di Ecologia Agraria (UCEA).Google Scholar
Prieur, R. & Cousin, R. (1978). Contribution à la mise au point d'une technique de sélection pour la résistance au froid des Pois d'hiver. Annales de l'Amélioration des Plantes 28, 157163.Google Scholar
Ranalli, P. (2001). Leguminose e Agricoltura Sostenibile – Specie da Granella e Cover Crops. Bologna, Italy: Calderini Edagricole.Google Scholar
Stoddard, F. L., Balko, C., Erskine, W., Khan, H. R., Link, W. & Sarker, A. (2006). Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147, 167186.CrossRefGoogle Scholar
Union Nationale Interprofessionnelle des Plantes Riches En Protéines (UNIP)/Institut Technique des Céréales et des Fourrages (ITCF) (2002 a). Lupin d'Hiver – Culture et Utilisation. Paris: ITCF.Google Scholar
UNIP/ITCF (2002 b). Variétés de Protéagineaux. Paris, France: ITCF.Google Scholar
Wery, J., Turc, O. & Lecoeur, J. (1993). Mechanisms of resistance to cold, heat and drought in cool-season legumes, with special reference to chickpea and pea. In Breeding for Stress Tolerance in Cool-Season Food Legumes (Eds Singh, K. B. & Saxena, M. C.), pp. 271291. Chichester, UK: J. Wiley & Sons.Google Scholar
Wricke, G. & Weber, W. E. (1986). Quantitative Genetics and Selection in Plant Breeding. Berlin: W. de Gruyter.CrossRefGoogle Scholar