Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T03:52:22.707Z Has data issue: false hasContentIssue false

Sweating in cattle. IV. Control of sweat glands secretion

Published online by Cambridge University Press:  27 March 2009

G. C. Taneja
Affiliation:
School of Physiology, University of Queensland, Brisbane, and College of Veterinary Science and Animal Husbandry, Mhow (M.P.), India

Extract

Two calves (Aberdeen Angus and American Brahman) were used exposed to different combinations of wet- and dry-bulb temperatures in a psychromatric chamber at the Physiology Department of the University of Queensland. These animals were 7–8 months old when first exposed to heat.

Effect of various drugs affecting the sympathetic nervous system (adrenaline, noradrenaline, Dibenamine, Priscol, atropine and acetylcholine) on the rate of cutaneous evaporation in calves was tested. Cutaneous evaporation was measured by means of a capsule before and after the administration of these drugs.

Cutaneous evaporation increased with the introduction of adrenaline and was suppressed by the administration of Dibenamine. Noradrenaline and Priscol had no appreciable effect. Acetylcholine failed to stimulate sweating and atropine did not block the sweat glands.

Sweat glands of cattle were, therefore, found to be functional and their innervation adrenergic. Cattle use sweat to prevent body temperature from rising, yet the amount of sweat secreted is not large enough to allow cattle to maintain thermoneutrality at high air temperatures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barcroft, H. & Swan, H. J. C. (1953). Sympathetic Control of Human Blood Vessels. London: Edward Arnold and Co.Google Scholar
Carter, H. B. & Dowling, D. F. (1954). Aust. J. Agric. Res. 5, 745.CrossRefGoogle Scholar
Chalmers, T. M. & Keele, C. A. (1951). J. Physiol. 14, 510.CrossRefGoogle Scholar
Dempsey, M. (1946). Nature, Lond., 157, 513.CrossRefGoogle Scholar
Dowling, D. F. (1955). Aust. J. Agric. Res. 6, 645.CrossRefGoogle Scholar
Ellenberger, W. (1906). Handbuch der vergleichenden mikroskopischen Anatomie der Haustier, vol. 1, 125. Berlin: Parey. (Cited by Findlay & Yang, 1950.)Google Scholar
Evans Lovatt, C. & Smith, D. F. G. (1954). J. Physiol. 126, 45.Google Scholar
Ferguson, K. A. & Dowling, D. F. (1955). Aust. J. Agric. Res. 6, 640.CrossRefGoogle Scholar
Findlay, J. A. & Yang, S. H. (1950). J. Agric. Sci. 40, 126.CrossRefGoogle Scholar
Goodman, L. S. & Gilman, A. (1955). The Pharmacological Basis of Therapeutics. New York: The Macmillan Co.Google Scholar
Gurlt, , (1835). Verleichende Untersuchungen uber die Haut des Menschen und der Haustiere besonders in Beziehung auf die Absonderungsorgane des Hauttalges und des Schweisses. (Cited by Findlay & Yang, 1950.)Google Scholar
Haimovici, H. (1948). Proc. Soc. Exp. Biol., N.Y., 68, 40.CrossRefGoogle Scholar
Haimovici, H. (1950). J. Appl. Physiol. 2, 512.CrossRefGoogle Scholar
Haimovici, H. & Medinets, H. E. (1948). Proc. Exp. Soc.Biol., N.Y., 67, 163.CrossRefGoogle Scholar
Kelley, R. B. (1932). Bull. Coun. sci. industr. Res. Aust. no. 27.Google Scholar
Langley, J. N. (1922). J. Physiol. 56, 110.CrossRefGoogle Scholar
Langley, J. N. & Bennett, S. (1923). J. Physiol. 57, lxxi.CrossRefGoogle Scholar
McDowell, R. E., Lee, D. H. K. & Fohrman, M. H. (1954). J. Anim. Sci. 13, 405.CrossRefGoogle Scholar
McDowell, R. E., McMullan, H. F., Wodzika, M., Lee, D. H. K. & Fohrman, M. H. (1955). J. Anim. Sci. 14, 1250.Google Scholar
Moule, G. R. (1954). (Unpublished.) Sheep and Wool Branch, Queensland Department of Agriculture and Stock, Brisbane.Google Scholar
Muto, K. (1916). Mitt. med. Fak. Tokyo, 15, 365.Google Scholar
Muto, K. (1925). J. Jap. Soc. Vet. Sci. 4, 1. (Cited by Findlay & Yang, 1950.)CrossRefGoogle Scholar
Nickerson, M. (1949). Pharmacol. Rev. 1, 27.Google Scholar
Patton, H. D. (1949). Proc. Soc. Exp. Biol., N.T., 70, 412.CrossRefGoogle Scholar
Randall, W. C. & Kimura, K. K. (1955). Pharmacol. Rev. 7, 365.Google Scholar
Sonnenschein, R. R., Kobrin, H. & Grossman, M. I. (1949). Amer. J. Physiol. 159, 591.Google Scholar
Taneja, G. C. (1956). Nature, Lond., 177, 482.CrossRefGoogle Scholar
Taneja, G. C. (1958). J. Agric. Sci. 50, 73.CrossRefGoogle Scholar
Taneja, G. C. (1959). J. Agric. Sci. 52, 50.CrossRefGoogle Scholar
Wilburne, M., Katz, L. N., Rodbard, S. & Surtshin, A. (1947). J. Pharmacol. 90, 215.Google Scholar
Yamane, J. & Ono, Y. (1936). Mem. Pac. Sci. Agric. Taihoku, 19, 3. (Cited by Findlay & Yang, 1950.)Google Scholar