Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T06:46:56.418Z Has data issue: false hasContentIssue false

Suitable regions for date palm cultivation in Iran are predicted to increase substantially under future climate change scenarios

Published online by Cambridge University Press:  26 November 2013

F. SHABANI*
Affiliation:
Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
L. KUMAR
Affiliation:
Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
S. TAYLOR
Affiliation:
Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The objective of the present paper is to use CLIMEX software to project how climate change might impact the future distribution of date palm (Phoenix dactylifera L.) in Iran. Although the outputs of this software are only based on the response of a species to climate, the CLIMEX results were refined in the present study using two non-climatic parameters: (a) the location of soils containing suitable physicochemical properties and (b) the spatial distribution of soil types having suitable soil taxonomy for dates, as unsuitable soil types impose problems in air permeability, hydraulic conductivity and root development. Here, two different Global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR), were employed with the A2 emission scenario to model the potential date palm distribution under current and future climates in Iran for the years 2030, 2050, 2070 and 2100. The results showed that only c. 0·30 of the area identified as suitable by CLIMEX will actually be suitable for date palm cultivation: the rest of the area comprises soil types that are not favourable for date palm cultivation. Moreover, the refined outputs indicate that the total area suitable for date palm cultivation will increase to 31·3 million ha by 2100, compared with 4·8 million ha for current date palm cultivation. The present results also indicate that only heat stress will have an impact on date palm distribution in Iran by 2100, with the areas currently impacted by cold stress diminishing by 2100.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, I. H., Mouhi, M. N., Al-Roubaie, J. T., Hama, N. N. & El-Bahadli, A. H. (1991). Phomopsis phoenicola and Fusarium equiseti, new pathogens on date palm in Iraq. Mycological Research 95, 509.Google Scholar
Abdul-Baki, A., Aslan, S., Linderman, R., Cobb, S. & Davis, A. (2007). Soil, Water and Nutritional Management of Date Orchards in the Coachella Valley and Bard. Washington, DC: USDA. Available from: http://www.cvconservation.org/pdf/SoilWaterNutrition.pdf (accessed 5 February 2013).Google Scholar
Alhammadi, M. S. & Kurup, S. S. (2012). Impact of salinity stress on date palm (Phoenix dactylifera L.) – a review. In Crop Production Technologies (Eds Sharma, P. & Abrol, V.), pp. 169173. New York: InTech.Google Scholar
Al-Senaidy, A. M. & Ismael, M. A. (2011). Purification and characterization of membrane-bound peroxidase from date palm leaves (Phoenix dactylifera L.). Saudi Journal of Biological Sciences 18, 293298.CrossRefGoogle ScholarPubMed
Al-Shahib, W. & Marshall, R. J. (2003). The fruit of the date palm: its possible use as the best food for the future? International Journal of Food Sciences and Nutrition 54, 247259.CrossRefGoogle ScholarPubMed
Araújo, M. B. & Luoto, M. (2007). The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography 16, 743753.CrossRefGoogle Scholar
Auda, H. & Khalaf, Z. (1979). Studies on sprout inhibition of potatoes and onions and shelf-life extension of dates in Iraq. Radiation Physics and Chemistry 14, 775781.Google Scholar
Bacha, M. A. & Abo-Hassan, A. A. (1983). Effects of soil fertilization on yield, fruit quality and mineral content of Khudari date palm variety. In Proceedings of the First Symposium on the Date Palm in Saudi Arabia, pp. 174180. Al-Hassa, Saudi Arabia: King Faisal University.Google Scholar
Barney, J. N. & DiTomaso, J. M. (2011). Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: potential problems and opportunities. PLoS ONE 6, e17222. doi: 10.1371/journal.pone.0017222CrossRefGoogle ScholarPubMed
Beaumont, L. J., Hughes, L. & Poulsen, M. (2005). Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions. Ecological Modelling 186, 251270.Google Scholar
Bokhary, H. A. (2010). Seed-borne fungi of date-palm, Phoenix dactylifera L. from Saudi Arabia. Saudi Journal of Biological Sciences 17, 327329.CrossRefGoogle ScholarPubMed
Botes, A. & Zaid, A. (2002). The economic importance of date production and international trade. In Date Palm Cultivation (Ed Zaid, A.), Chapter III. FAO Plant Production and Protection Paper 156. Rome: FAO.Google Scholar
Burt, J. (2005). Growing Date Palms in Western Australia. FarmNote no. 55/99. South Perth, Australia: Government of Western Australia, Department of Agriculture and Food. Available from: http://www.agric.wa.gov.au/objtwr/imported_assets/content/hort/fn/cp/strawberries/f05599.pdf (accessed 8 December 2012).Google Scholar
Chakraborty, S., Tiedemann, A. V. & Teng, P. S. (2000). Climate change: potential impact on plant diseases. Environmental Pollution 108, 317326.Google Scholar
Chao, C. C. T. & Krueger, R. R. (2007). The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience 42, 10771083.CrossRefGoogle Scholar
Chiew, F. H. S., Kirono, D. G. C., Kent, D. & Vaze, J. (2009). Assessment of rainfall simulations from global climate models and implications for climate change impact on runoff studies. In 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009 (Eds Anderssen, R. S., Braddock, R. D. & Newham, L. T. H.), pp. 39073914. Christchurch, NZ: Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation.Google Scholar
Coakley, S. M., Scherm, H. & Chakraborty, S. (1999). Climate change and plant disease management. Annual Review of Phytopathology 37, 399426.Google Scholar
Dialami, H. & Mohebi, A. H. (2010). Increasing yield and fruit quality of ‘Sayer’ date palm with application of optimum levels of nitrogen, phosphorus and potassium. Acta Horticulturae 882, 353360.CrossRefGoogle Scholar
El-Baz, E. E. T. & El-Dengawy, E. F. (2003). Effect of calcium and zinc sprays on fruit nature dropping of Hayany date cultivar. 1.-yield and fruit quality. Zagazig Journal of Agricultural Research 30, 14771489.Google Scholar
Elhoumaizi, M. A., Saaidi, M., Oihabi, A. & Cilas, C. (2002). Phenotypic diversity of date-palm cultivars (Phoenix dactylifera L.) from Morocco. Genetic Resources and Crop Evolution 49, 483490.CrossRefGoogle Scholar
El Modafar, C., Tantaoui, A. & El Boustani, E. (2000). Changes in cell wall bound phenolic compounds and lignin in roots of date palm cultivars differing in susceptibility to Fusarium oxysporum f. sp. albedinis. Journal of Phytopathology 148, 405411.CrossRefGoogle Scholar
Elshibli, S., Elshibli, E. & Korpelainen, H. (2009). Date palm (Phoenix dactylifera L.) plants under water stress: maximisation of photosynthetic Co2 supply function and ecotype specific response. In Biophysical and Socio-economic Frame Conditions for the Sustainable Management of Natural Resources. Tropentag 2009, Book of Abstracts (Ed Tielkes, E.), p. 328. Witzenhausen, Germany: DITSL GmbH.Google Scholar
Eshraghi, P., Zarghami, R. & Mirabdulbaghi, M. (2005). Somatic embryogenesis in two Iranian date palm. African Journal of Biotechnology 4, 13091312.Google Scholar
Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. (2007). The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Global Ecology and Biogeography 16, 2433.Google Scholar
Follak, S. & Strauss, G. (2010). Potential distribution and management of the invasive weed Solanum carolinense in Central Europe. Weed Research 50, 544552.Google Scholar
Fordham, D. A., Akçakaya, H. R., Araújo, M. & Brook, B. W. (2012). Modelling range shifts for invasive vertebrates in response to climate change. In Wildlife Conservation in a Changing Climate (Eds Brodie, J. & Post, E. & Doak, D. F.), pp. 86108. Chicago: University of Chicago Press.Google Scholar
GBIF (2010). Global Biodiversity Information Facility: Free and open Access to Biodiversity Data. Copenhagen: GBIF. Available from: http://www.gbif.org/ (accessed 19 January 2012).Google Scholar
Guisan, A. & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147186.CrossRefGoogle Scholar
Hassan, S., Bakhsh, K., Ahmad Gill, Z., Maqbool, A. & Ahmed, W. (2006). Economics of growing date palm in Punjab, Pakistan. International Journal of Agriculture and Biology 8, 788792.Google Scholar
Heakal, M. S. & Al-Awajy, M. H. (1989). Long-term effects of irrigation and date-palm production on Torripsamments, Saudi Arabia. Geoderma 44, 261273.Google Scholar
Hearne Scientific Software (2007). CLIMEX Software Version 3.0.2. Melbourne: Hearne Scientific Software Pty Ltd.Google Scholar
IPCC (2007). Summary for policymakers. In Climate Change 2007: Synthesis Report (Eds Core Writing Team, Pachauri, R. K. & Reisinger, A.), pp. 122. Geneva, Switzerland: IPCC.Google Scholar
Jain, S. M. (2011). Prospects of in vitro conservation of date palm genetic diversity for sustainable production. Emirates Journal of Food and Agriculture 23, 110119.Google Scholar
Jain, S. M., Al-Khayri, J. M. & Johnson, D. V. (2011). Date Palm Biotechnology. Dordrecht, The Netherlands: Springer.Google Scholar
Jones, P. G. & Thornton, P. K. (2003). The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environmental Change 13, 5159.Google Scholar
Kassem, H. A. (2012). The response of date palm to calcareous soil fertilisation. Journal of Soil Science and Plant Nutrition 12, 4558.Google Scholar
Khayyat, M., Tafazoli, E., Eshghi, S. & Rajaee, S. (2007). Effect of nitrogen, boron, potassium and zinc sprays on yield and fruit quality of date palm. American-Eurasian Journal of Agricultural & Environmental Science 2, 289296.Google Scholar
Kocmánková, E., Trnka, M., Žalud, Z. & Dubrovský, M. (2004). Agroclimatological Model CLIMEX and its Application for Mapping of Colorado Potato Beatle Occurrence. Project no. 552/05/0125 (Grant Agency of the Czech Republic) and Project no. 60051 (National Agency for Agricultural Research). Brno, Czech Republic: Institute of Agrosystems and Bioclimatology, Mendel University of Agriculture and Forestry. Available from: http://www.cbks.cz/sbornikstrecno06/prispevky/posterii_clanky/p2–15.pdf (accessed 19 February 2012).Google Scholar
Kriticos, D. J. (2006). Release notes for Ozclim Australian Climate Change Scenarios for use in CLIMEX (version 1). Unpublished Report, CSIRO. (Available from CSIRO Entomology). Clayton, South Vic, Australia: CSIRO.Google Scholar
Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W. & Maywald, G. F. (2003). Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp indica in Australia. Journal of Applied Ecology 40, 111124.CrossRefGoogle Scholar
Kriticos, D. J., Potter, K. J. B., Alexander, N. S., Gibb, A. R. & Suckling, D. M. (2007). Using a pheromone lure survey to establish the native and potential distribution of an invasive Lepidopteran. Journal of Applied Ecology 44, 853863.Google Scholar
Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J. & Scott, J. K. (2012). CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3, 5364.Google Scholar
Mahmoudi, H., Hosseininia, G., Azadi, H. & Fatemi, M. (2008). Enhancing date palm processing, marketing and pest control through organic culture. Journal of Organic Systems 3, 2939.Google Scholar
Markhand, G. S., Abdul-Soad, A. A., Mirbahar, A. A. & Kanhar, N. A. (2010). Fruit characterization of Pakistani dates. Pakistan Journal of Botany 42, 37153722.Google Scholar
Marqués, J., Duran-Vila, N. & Daròs, J. A. (2011). The Mn-binding proteins of the photosystem II oxygen-evolving complex are decreased in date palms affected by brittle leaf disease. Plant Physiology and Biochemistry 49, 388394.Google Scholar
McDermott, M. (2009). Climate change-induced drought causing crop failure, livestock problems in Indian Himalayas. Treehugger, November 19, 2009. Available from: http://www.treehugger.com/natural-sciences/climate-change-induced-drought-causing-crop-failure-livestock-problems-in-indian-himalayas.html (accessed 6 February 2012).Google Scholar
Paterson, R. R. M., Sariah, M. & Lima, N. (2013). How will climate change affect oil palm fungal diseases? Crop Protection 46, 113120.Google Scholar
Pearson, R. G., Dawson, T. P. & Liu, C. (2004). Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27, 285298.CrossRefGoogle Scholar
Phillips, S. J. & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161175.CrossRefGoogle Scholar
Poutsma, J., Loomans, A. J. M., Aukema, B. & Heijerman, T. (2008). Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. BioControl 53, 103125.CrossRefGoogle Scholar
Rahnema, A. (2013). Iranian Date Palm Institution. Available from: http://khorma.areo.ir/ (access date 24 February 2012).Google Scholar
Ramoliya, P. J. & Pandey, A. N. (2003). Soil salinity and water status affect growth of Phoenix dactylifera seedlings. New Zealand Journal of Crop and Horticultural Science 31, 345353.Google Scholar
Rasmussen, K. J. (1999). Impact of ploughless soil tillage on yield and soil quality: a Scandinavian review. Soil and Tillage Research 53, 314.Google Scholar
Reilly, D. & Reilly, A. (2012). Gurra Downs Date Palms: Our Plantation. Available from: http://www.gurradowns.com.au/Ourplantation.php (accessed 19 May 2013).Google Scholar
Rogers, D. J., Reid, R. E., Rogers, J. J. & Addison, S. J. (2007). Prediction of the naturalisation potential and weediness risk of transgenic cotton in Australia. Agriculture, Ecosystems & Environment 119, 177189.CrossRefGoogle Scholar
Rouhani, I. & Bassiri, A. (1977). Effect of ethephon on ripening and physiology of date fruits at different stages of maturity. Journal of Horticultural Science & Biotechnology 52, 289297.Google Scholar
Saremi, H., Kumar, L., Sarmadian, F., Heidari, A. & Shabani, F. (2011). GIS based evaluation of land suitability: a case study for major crops in Zanjan University region. Journal of Food, Agriculture & Environment 99, 741744.Google Scholar
Senaratne, K. A. D., Palmer, W. A. & Sutherst, R. W. (2006). Use of CLIMEX modelling to identify prospective areas for exploration to find new biological control agents for prickly acacia. Australian Journal of Entomology 45, 298302.CrossRefGoogle Scholar
Shabani, F., Gorji, M., Heidari, A. & Esmeili, A. (2010). Effects of landuse types at different slopes on soil erodibility factor (a case study from Amol area, north of Iran). In Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia (Eds Gilkes, R. J. & Prakongkep, N.), pp. 1417. Brisbane, Austrlia: IUSS.Google Scholar
Shabani, F., Kumar, L. & Taylor, S. (2012). Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX. PLoS ONE 7, e48021. doi: 10.1371/journal.pone.0048021Google Scholar
Shabani, F., Kumar, L. & Esmaeili, A. (2013). Use of CLIMEX, land use and topography to refine areas suitable for date palm cultivation in Spain under climate change scenarios. Journal of Earth Science & Climatic Change 4, 145. doi: 10.4172/2157-7617.1000145Google Scholar
Shani, U. & Dudley, L. M. (2001). Field studies of crop response to water and salt stress. Soil Science Society of America Journal 65, 15221528.Google Scholar
Shayesteh, N., Marouf, A. & Amir-Maafi, M. (2010). Some biological characteristics of the Batrachedra amydraula Meyrick (Lepidoptera: Batrachedridae) on main varieties of dry and semi-dry date palm of Iran. In 10th International Working Conference on Stored Product Protection (Eds Carvalho, M. O., Fields, P. G., Adler, C. S., Arthur, F. H., Athanassiou, C. G., Campbell, J. F., Fleurat-Lessard, F., Flinn, P. W., Hodges, R. J., Isikber, A. A., Navarro, S., Noyes, R. T., Riudavets, J., Sinha, K. K., Thorpe, G. R., Timlick, B. H., Trematerra, P. & White, N. D. G.), pp. 151155. Berlin: Julius-Kühn Institut.Google Scholar
Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10, 11151123.Google Scholar
Soil Survey Staff (2006). Keys to Soil Taxonomy, 10th edn, Washington, DC: United States Department of Agriculture.Google Scholar
Strauss, B., Tebaldi, C. & Ziemlinski, R. (2012). Surging Seas: Sea Level Rise, Storms & Global Warming's Threat to the US Coast. A Climate Central Report. Princeton, NJ, USA: Climate Central. Available from: http://coolgreenschools.com/wp-content/uploads/2012/12/SurgingSeas.pdf (accessed 9 April 2013).Google Scholar
Suppiah, R., Hennessy, K., Whetton, P. K., Mcinnes, K., Macadam, I., Bathois, J., Ricketts, J. & Page, C. M. (2007). Australian climate change projections derived from simulations performed for the IPCC 4th Assessment Report. Australian Meteorological Magazine 56, 131152.Google Scholar
Sutherst, R. W. & Maywald, G. (1985). A computerized system for matching climates in ecology. Agriculture Ecosystems & Environment 13, 281299.Google Scholar
Sutherst, R. W., Baker, R. H. A., Coakley, S. M., Harrington, R., Kriticos, D. J. & Scherm, H. (2007 a). Pests under global change – meeting your future landlords? In Terrestrial Ecosystems in a Changing World (Eds Canadell, J. G., Pataki, D. E. & Pitelka, L. F.), pp. 211226. New York: Springer Berlin Heidelberg.Google Scholar
Sutherst, R. W., Maywald, G. F. & Kriticos, D. J. (2007 b). CLIMEX Version 3: User's Guide. Melbourne: Hearne Scientific Software Pty Ltd.Google Scholar
Sutherst, R. W., Maywald, G. F. & Bourne, A. S. (2007 c). Including species interactions in risk assessments for global change. Global Change Biology 13, 18431859.Google Scholar
Taylor, S., Kumar, L., Reid, N. & Kriticos, D. J. (2012). Climate change and the potential distribution of an invasive shrub, Lantana camara. L. PLoS ONE 7, e35565. doi: 10.1371/journal.pone.0035565.Google Scholar
Tengberg, M. (2012). Beginnings and early history of date palm garden cultivation in the Middle East. Journal of Arid Environments 86, 139147.CrossRefGoogle Scholar
Tripler, E., Ben-Gal, A. & Shani, U. (2007). Consequence of salinity and excess boron on growth, evapotranspiration and ion uptake in date palm (Phoenix dactylifera L., cv. Medjool). Plant and Soil 297, 147155.Google Scholar
Wang, J., Wang, E., Yang, X., Zhang, F. & Yin, H. (2012). Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change 113, 825840.Google Scholar
Webber, B. L., Yates, C. J., Le Maitre, D. C., Scott, J. K., Kriticos, D. J., Ota, N., McNeill, A., Le Roux, J. & Midgley, G. (2011). Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Diversity and Distributions 17, 9781000.Google Scholar
Zaid, A. & De Wet, P. F. (1999). Botanical and systematic description of date palm. In Date Palm Cultivation (Ed Zaid, A.), pp. 128. FAO Plant Production and Protection Paper 156. Rome: FAO.Google Scholar