Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T05:33:51.115Z Has data issue: false hasContentIssue false

Some biochemical and hormonal aspects of experimental ovine pregnancy toxaemia

Published online by Cambridge University Press:  27 March 2009

N. Saba
Affiliation:
Central Veterinary Laboratory, Ministry of Agriculture, Fisheries & Food, Weybridge, Surrey
K. N. Burns
Affiliation:
Central Veterinary Laboratory, Ministry of Agriculture, Fisheries & Food, Weybridge, Surrey
N. F. Cunningham
Affiliation:
Central Veterinary Laboratory, Ministry of Agriculture, Fisheries & Food, Weybridge, Surrey
C. Nancy Hebert
Affiliation:
Central Veterinary Laboratory, Ministry of Agriculture, Fisheries & Food, Weybridge, Surrey
D. S. P. Patterson
Affiliation:
Central Veterinary Laboratory, Ministry of Agriculture, Fisheries & Food, Weybridge, Surrey

Extract

1. Some of the effects of stress, fasting and ACTH injections in pregnant ewes were investigated.

2. A 6-day fast produced a relatively mild hypoglycaemia and hyperketonaemia without inducing pregnancy toxaemia.

3. Stress of transport produced an immediate slight rise in plasma cortisol; 4 hr. later the plasma cortisol had returned to the pre-stress levels.

4. A combination of stress and fasting produced severe hypoglycaemia, hyperketonaemia and subacute pregnancy toxaemia, but there was no increase in plasma cortisol levels.

5. Daily injections of ACTH resulted in a fourfold increase in plasma cortisol and prevented the development of hypoglycaemia, severe hyperketonaemia, and pregnancy toxaemia in pregnant ewes subjected to stress and fasting.

6. Changes in plasma concentrations of NEFA, urea, proteins, catecholamines and insulin were also investigated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annison, E. F. (1960). Aust. J. Agric. Sci. 11, 58.CrossRefGoogle Scholar
Bergman, E. N. (1963). Amer. J. Physiol. 204, 147.CrossRefGoogle Scholar
Ceriotti, J. & Spandrio, L. (1963). Clin. Chim. Acta 8, 295.CrossRefGoogle Scholar
Cunningham, N. F. (1962 a). J. Endocrin. 25, 35.Google Scholar
Cunningham, N. F. (1962 b). J. Endocrin. 25, 43.CrossRefGoogle Scholar
Dole, V. P. (1956). J. Clin. Invest. 35, 150.CrossRefGoogle Scholar
Forbes, T. J. & Singleton, A. J. (1964). Brit. Vet. J. 120, 56.CrossRefGoogle Scholar
Jordon, R. S. & Cherkes, A. (1956). J. Clin. Invest. 35, 206.Google Scholar
Holm, L. W. (1958). Cornell Vet. 48, 347.Google Scholar
Lindner, H. (1959). Nature. Lond. 184, 1645.CrossRefGoogle Scholar
McClymont, J. L. & Setchell, B. P. (1955). Aust. Vet. J. 31, 53.CrossRefGoogle Scholar
Mayes, P. A. & Robson, W. (1957). Biochem. J. 59, 179.Google Scholar
Moore, S. & Stein, W. H. (1954). J. Biol. Chem. 211, 907.Google Scholar
Patterson, D. S. P. (1963). Res. Vet. Sci. 4, 230.Google Scholar
Patterson, D. S. P., Burns, K. N., Cunningham, N. F., Hebert, C. N. & Saba, N. (1964). J. Agric. Sci. 62, 253.Google Scholar
Reid, R. L. (1960 a). Aust. J. Agric. Sci. 11, 346.CrossRefGoogle Scholar
Reid, R. L. (1960 b). Aust. J. Agric. Sci. 11, 364.CrossRefGoogle Scholar
Reid, R. L. (1960 c). Analyst. 85, 265.CrossRefGoogle Scholar
Reid, R. L. (1960 d). Aust. J. Agric. Sci. 11, 42.Google Scholar
Reid, R. L. & Hogan, J. P. (1959). Aust. J. Agric. Sci. 10, 81.CrossRefGoogle Scholar
Saba, N. (1964). J. Endocrin. 28, 139.Google Scholar
Somogyi, M. (1945). J. Biol. chem. 160, 69.CrossRefGoogle Scholar
Somogyi, M. (1952). J. Biol. chem. 195, 19.CrossRefGoogle Scholar
Thomson, J. J. (1956). N.Z. Vet. J. 4, 136.Google Scholar
Tombs, P., Souter, F. & Maclagen, N. F. (1959). Biochem. J. 73, 167.CrossRefGoogle Scholar
Weil-Malherbe, H. (1961). In Methods in Medical Research 9, 130.Google Scholar
Weil-Malherbe, H. & Bone, A. D. (1952). Biochem. J. 51, 311.CrossRefGoogle Scholar