Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T05:24:50.620Z Has data issue: false hasContentIssue false

Seasonal variations in the composition of Pinus halepensis and Pinus sylvestris twigs and needles essential oil

Published online by Cambridge University Press:  27 March 2009

E. García-Peregrín
Affiliation:
Department of Biochemistry, University of Granada, Granada, Spain

Summary

Influence of season on the terpene composition of Pinus halepensis and Pinus sylvestris was investigated. The essential oil of twigs and needles from a preselected plot of pines was investigated from October to June. In P. halepensis, the average composition during this time was 27·2% α-pinene, 65·0% sabinene, 7·2% 3-carene and 0·5% β-pinene in the essential oil of twigs; 32·1% α-pinene, 35·9% sabinene, 18·5% terpinolene, 4·3% 3-carene, 3·1% β-pinene and 6·1% thujene, limonene, β;-phellandrene and γ-terpinene in the essential oil of needles. In P. sylvestris, the average composition was 49·2% α-pinene, 30·1% sabinene, 14·9% β-pinene and 7·9% limonene in the essential oil of twigs; 69·5% α-pinene, 14·9% camphene, 9·1% β-pinene, 3·6% sabinene and 2·8% limonene in the essential oil of needles. The maximum amount of sabinene coincides with the minimum of α-pinene, both in twigs and needles essential oil from P. halepensis and P. sylvestris. The month-to-month changes in the oil composition are statistically significant for the most part. It is of interest to point out the decrease of sabinene content of needles essential oil in comparison with the twigs essential oil, with the simultaneous increaseof terpinolene in P. halepensis and camphene in P. sylvestris.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, R. P. (1970). Seasonal variation of terpenoid constituents in natural populations of Juniperus pinchotii Sudw. Phytochemistry 9, 397402.CrossRefGoogle Scholar
Banthorpe, D. V. & Le Patourel, G. N. J. (1972). The biosynthesis of (+)-α-pinene in Pinus species. Biochemical Journal 130, 1055–61.CrossRefGoogle ScholarPubMed
Bardyshev, I. I. (1955). The presence of p-cymol in gum turpentine of Pinus silvestris. Doklady Akademii of Sciences of USSR 101, 263–4.Google Scholar
Cori, O. (1969). Terpene biosynthesis: Utilization of neryl pyrophosphate by an enzyme system from Pinus radiata seedlings. Archives of Biochemistry and Biophysics 135, 416–18.CrossRefGoogle ScholarPubMed
Dupont, G. & Barraud, M. (1928). Composition de l'essence de pin sylvestre (P. sylvestris). Procésverbaux de la Societé de Sciences Physiques et Naturelles de Bordeaux. Année 19261927, 164–7.Google Scholar
Fujita, Y. (1953). Linalöol as the common precursor of terpenes. Science (Tokyo) 23, 365.Google Scholar
Funes, A., Sanchez-Medina, F. & Mayor, F. (1973). Terpene composition of Pinus pinaster seedlings and plants. Phytochemistry 12, 1391–4.CrossRefGoogle Scholar
Hefendehl, F. W. (1967). Beiträge zur biogenese ätherischer öle. Die rolle der kohlenwasserstoffe bei der biogenese sauerstoffhaltiger monoterpene. Planta Medica 15, 121–31.CrossRefGoogle Scholar
Hefendehl, F. W. & Murray, M. J. (1972). Changes in monoterpene composition in Mentha aquatica produced by gene substitution. Phytochemistry 11, 189–95.CrossRefGoogle Scholar
Iconomou, N., Walkanas, G. & Buchi, J. (1964). Composition of gum turpentines of Pinus halepensis and Pinus brutia grown in Greece. Journal of Chromatography 16, 2933.CrossRefGoogle Scholar
Lokki, J., Sorsa, M., Forsen, K. & Schantz, M. V. (1973). Genetics of monoterpenes in Chrysanthemum vulgare. I. Genetic control and inheritance of some of the most common chemotypes. Hereditas 74, 225–32.CrossRefGoogle Scholar
Machado, A., García-Peregrín, E. & Mayor, F. (1974). Synthesis of linalool and 4-terpineol from (14C) mevalonic acid in Pinus pinaster. Plant Science Letters 2, 83–7.CrossRefGoogle Scholar
Mirov, N. T. (1961). Composition of gum turpentines of pines. U.S. Department of Agriculture. Technical Bulletin No. 1239.Google Scholar
Mirov, N. T. & Iloff, P. M. Jr, (1955). Composition of gum turpentines of pines. XXIII, A report on three Mediterranean species: Pinus pinea (cultivatedin California), P. halepensis (from Israel) and P. brutia (from Cyprus). American Pharmaceutical Association Journal, Sci. Ed., 43, 378–81.CrossRefGoogle Scholar
Murray, M. J. & Hefendehl, F. W. (1972). Changes in monoterpene composition of Mentha aquatica produced by gene substitution from M. arvensis. Phytochemistry 11, 2469–74.CrossRefGoogle Scholar
Murray, M. J. & Hefendehl, F. W. (1973). Changes in monoterpene composition of Mentha aquatica produced by gene substitution from a high limonene strain of M. citrata.Phytochemistry 12, 1875–80.CrossRefGoogle Scholar
Powell, R. A. & Adams, R. P. (1973). Seasonal variation in the volatile terpenoids of Juniperus scopulorum (Cupressaceae). American Journal of Botany 60, 1041–50.CrossRefGoogle Scholar
Rothbacher, H. (1968). Zur biosynthese einiger terpene des öls von Mentha piperita L. Die Phctrmazie 23, 389–91.Google ScholarPubMed
Ruzicka, L. (1953). The isoprene rule and the biogenesis of terpenic compounds. Experientia 9, 357–67.CrossRefGoogle ScholarPubMed
Sandermann, W. (1962). Biosynthetische untersuchungen an verschiedenen kiefernarten. Holzforschung 16, 6574.Google Scholar
Vézes, M. & Dupont, G. (1922). Les constituants de la gemme de pin d'alep. Chimie et Industrie 8, 318–19.Google Scholar
von Rudloff, E. (1962). Gas-liquid chromatography of terpenes. Part V. The volatile oils of leaves of black, white and Colorado spruce. Tappi 45, 181–4.Google Scholar
von Rudloff, E. & Hefendehl, F. W. (1966). Gasliquid chromatography of terpenes. XV. The volatile oil of Mentha arvensis var. glabrata Ray. Canadian Journal of Chemistry 44, 2015–22.CrossRefGoogle Scholar
von Rudloff, E. & Underhill, E. W. (1965). Gasliquid chromatography of terpenes. XII. Seasonal variation in the volatile oil from Tanacetum vulgare L. Phytochemistry 4, 1117.CrossRefGoogle Scholar
Zavarin, E. (1970). Qualitative and quantitative co-occurrence of terpenoids as a tool for elucidation of their biosynthesis. Phytochemistry 9, 1049–63.CrossRefGoogle Scholar
Zavabin, E., Cobb, F. W., Bergot, J. & Barber, H. W. (1971). Variation of the Pinus ponderosa needle oil with season and needle age. Phytochemistry 10, 3107–14.CrossRefGoogle Scholar