Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T00:44:04.718Z Has data issue: false hasContentIssue false

The relationship among freezing tolerance, vernalization requirement, Ppd alleles and winter hardiness in European wheat cultivars

Published online by Cambridge University Press:  18 August 2017

A. GORASH*
Affiliation:
Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto 1, Akademija, Kėdainiai distr., Lithuania
R. ARMONIENĖ
Affiliation:
Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto 1, Akademija, Kėdainiai distr., Lithuania
Ž. LIATUKAS
Affiliation:
Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto 1, Akademija, Kėdainiai distr., Lithuania
G. BRAZAUSKAS
Affiliation:
Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto 1, Akademija, Kėdainiai distr., Lithuania
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Winter hardiness of wheat is a complex trait involving a system of structural, regulatory and developmental genes, which interact in a complex pathway. The objective of the present work was to study the relationship among the main traits determining the level of adaptation and the possibility for target manipulation of breeding material by using molecular markers and phenological parameters. Wheat cultivars from different ecoclimatic environments of Europe were included for analysis. Gene-specific assay showed that photoperiod sensitivity of the studied cultivars was determined by polymorphism in the Ppd-D1 allele. The study established the relationship among winter hardiness, LT50 (the temperature at which 50% of plants are killed), photoperiod sensitivity, vernalization duration and earliness per se genes in the environment of Lithuania. The cultivars from Northern and Western Europe exhibited stronger requirement for vernalization and photoperiod. Although the group of cultivars from the southern latitudes were characterized by earliness, they possessed a stronger level of LT50. The level of LT50 was found to be the most crucial component of winter hardiness, the other traits served as supplementary components.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasabad, E. Z., Mohammadi, S. A., Moghaddam, M. V. & Kamali, M. R. J. (2015). Variation in the first intron of VRN-1 gene in winter and spring Iranian wheat landraces. Biological Forum – An International Journal 7, 395400.Google Scholar
Appendino, M. L., Bartoloni, N. & Slafer, G. A. (2003). Vernalization response and earliness per se in cultivars representing different eras of wheat breeding in Argentina. Euphytica 130, 6169.CrossRefGoogle Scholar
Armonienė, R. & Brazauskas, G. (2014). Nonsense-mediated decay of sucrose synthase 1 mRNA with induced premature chain termination codon during cold acclimation in winter wheat. Turkish Journal of Botany 38, 11471156.CrossRefGoogle Scholar
Armonienė, R., Liatukas, Ž., Brazauskas, G. (2013). Evaluation of freezing tolerance of winter wheat (Triticum aestivum L.) under controlled conditions and in the field. Zemdirbyste-Agriculture 100, 417424.Google Scholar
Batashova, M., Dryzhenko, L. & Tishchenko, V. (2011). Using indirect methods for winter resistance estimation of winter wheat lines and cultivars. In Climate Change: Challenges and Opportunities in Agriculture. AGRISAFE Final Conference, 21–23 March 2011, Budapest, Hungary. Proceedings 2011 (Ed. Veisz, O.), pp. 135138. Budapest, Hungary: Agricultural Research Institute of the Hungarian Academy of Sciences.Google Scholar
Beales, J., Turner, A., Griffiths, S., Snape, J. W. & Laurie, D. A. (2007). A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theoretical and Applied Genetics 115, 721733.Google Scholar
Bullrich, L., Appendino, M. L., Tranquilli, G., Lewis, S. & Dubcovsky, J. (2002). Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1A m. Theoretical and Applied Genetics 105, 585593.Google Scholar
Danyluk, J., Kane, N. A., Breton, G., Limin, A. E., Fowler, D. B. & Sarhan, F. (2003). TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiology 132, 18491860.Google Scholar
Diaz, A., Zikhali, M., Turner, A. S., Isaac, P. & Laurie, D. A. (2012). Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE 7, e33234. https://doi.org/10.1371/journal.pone.0033234.Google Scholar
Distelfeld, A., Li, C. & Dubcovsky, J. (2009). Regulation of flowering in temperate cereals. Current Opinion in Plant Biology 12, 178184.CrossRefGoogle ScholarPubMed
FAO (2014). FAOSTAT Database. Agricultural Crops: Wheat: Area Harvested. Rome, Italy: FAO. Available from: http://www.fao.org/faostat/en/ (Accessed 19 May 2017).Google Scholar
Fayt, V. I. (2009). Identification and effects of gene alleles controlling developmental rate in wheat. Ph.D. Thesis. Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation, Odesa, Ukraine.Google Scholar
Fayt, V. I., Simonenko, L. K., Mokanu, N. V. & Popova, N. V. (2007). Chromosomal location of genes for vernalization requirement duration (Vrd) in winter bread wheat. Russian Journal of Genetics 43, 143148.CrossRefGoogle Scholar
Fowler, D. B. (2008). Wheat production in a changing environment – low temperature adaptation. In Proceedings of the 11th International Wheat Genetics Symposium 24–29 August 2008, Brisbane QLD Volume 1 (Eds Appels, R., Eastwood, R., Lagudah, E., Langridge, P., Mackay, M., McIntyre, L. & Sharp, P.), pp. 109115. Sydney, Australia: Sydney University Press.Google Scholar
Fowler, D. B. & Limin, A. E. (2007). Progress in breeding wheat with tolerance to low temperature in different phenological developmental stages. In Wheat Production in Stressed Environments (Eds Buck, H. T., Nisi, J. E. & Salomón, N.), vol. 12, pp. 301314. Developments in Plant Breeding, Dordrecht, the Netherlands: Springer.Google Scholar
Fowler, D. B., Gusta, L. V. & Tyler, N. J. (1981). Selection for winterhardiness in wheat. III. Screening methods. Crop Science 21, 896901.CrossRefGoogle Scholar
Fowler, D. B., Byrns, B. M. & Greer, K. J. (2014). Overwinter low-temperature responses of cereals: analyses and simulation. Crop Science 54, 23952405.Google Scholar
Fu, D., Szucs, P., Yan, L., Helguera, M., Skinner, J. S., Von Zitzewitz, J., Hayes, P. M. & Dubcovsky, J. (2005). Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Molecular Genetics and Genomics 273, 5465.Google Scholar
Galiba, G., Quarrie, S. A., Sutka, J., Morgounov, A. & Snape, J. W. (1995). RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theoretical and Applied Genetics 90, 11741179.Google Scholar
Gomez, D., Vanzetti, L., Helguera, M., Lombardo, L., Fraschina, J. & Miralles, D. J. (2014). Effect of Vrn-1, Ppd-1 genes and earliness per se on heading time in Argentinean bread wheat cultivars. Field Crops Research 158, 7381.CrossRefGoogle Scholar
Gotoh, T. (1979). Genetic studies on growth habit of some important spring wheat cultivars in Japan, with special reference to the identification of the spring genes involved. Japanese Journal of Breeding 29, 133145.Google Scholar
Griffiths, S., Simmonds, J., Leverington, M., Wang, Y., Fish, L., Sayers, L., Alibert, L., Orford, S., Wingen, L., Herry, L., Faure, S., Laurie, D., Bilham, L. & Snape, J. (2009). Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theoretical and Applied Genetics 119, 383395.Google Scholar
Gusta, L. V., O'Connor, B. J. & MacHutcheon, M. G. (1997). The selection of superior winter-hardy genotypes using a prolonged freeze test. Canadian Journal of Plant Science 77, 1521.CrossRefGoogle Scholar
ISSS Working Group RB (1998). Chapter 2. Key to the Reference Soil Groups. In: World Reference Base for Soil Resources: Atlas (Eds Bridges, E. M., Batjes, N. H. & Nachtergaele, F. O.). Leuven, Belgium: ISRIC-FAO-ISSSQ-Acco.Google Scholar
Kamran, A., Iqbal, M. & Spaner, D. (2014). Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197, 126.CrossRefGoogle Scholar
Kiss, T., Balla, K., Veisz, O., Lang, L., Bedo, Z., Griffiths, S., Isaac, P. & Karsai, I. (2014). Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.). Molecular Breeding 34, 297310.CrossRefGoogle Scholar
Kobayashi, F., Takumi, S., Kume, S., Ishibashi, M., Ohno, R., Murai, K. & Nakamura, C. (2005). Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. Journal of Experimental Botany 56, 887895.Google Scholar
Langer, S. M., Longin, C. F. H. & Würschum, T. (2014). Flowering time control in European winter wheat. Frontiers in Plant Science 5, 537. doi: 10.3389/fpls.2014.00537.CrossRefGoogle ScholarPubMed
Lassner, M. W., Peterson, P. & Yoder, J. I. (1989). Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Molecular Biology Reporter 7, 116128.Google Scholar
Laudencia-Chingcuanco, D., Ganeshan, S., You, F., Fowler, D. B., Chibbar, R. & Anderson, O. (2011). Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.). BMC Genomics 12, 299. doi: 10.1186/1471-2164-12-299.CrossRefGoogle ScholarPubMed
Mokanu, N. V. & Fayt, V. I. (2008). Differences in the effects of alleles of the genes Vrd1 and Ppd-D1 with respect to winter hardiness, frost tolerance and yield in winter wheat. Cytology and Genetics 42, 384390.Google Scholar
Muterko, A. F. & Salina, E. A. (2017). Analysis of the VERNALIZATION-A1 exon-4 polymorphism in polyploid wheat. Vavilov Journal of Genetics and Breeding 21, 323333.Google Scholar
Nishida, H., Yoshida, T., Kawakami, K., Fujita, M., Long, B., Akashi, Y., Laurie, D. A. & Kato, K. (2013). Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Molecular Breeding 31, 2737.CrossRefGoogle Scholar
Petr, J. & Hnilicka, F. (2002). Changes in requirements on vernalization of winter wheat varieties in the Czech Republic in 1950–2000. Rostlinna Vyroba 48, 148153.Google Scholar
R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Shcherban, A. B., Borner, A. & Salina, E. A. (2015). Effect of VRN-1 and PPD-D1 genes on heading time in European bread wheat cultivars. Plant Breeding 134, 4955.Google Scholar
Šíp, V., Chrpová, J., Žofajová, A., Milec, Z., Mihalik, D., Pánková, K. & Snape, J. W. (2011). Evidence of selective changes in winter wheat in middle-European environments reflected by allelic diversity at loci affecting plant height and photoperiodic response. Journal of Agricultural Science, Cambridge 149, 313326.Google Scholar
Snape, J. W., Semikhodskii, A., Fish, L., Sarma, R. N., Quarrie, S. A., Galiba, G. & Sutka, J. (1997). Mapping frost resistance loci in wheat and comparative mapping with other cereals. Acta Agronomica Hungarica 45, 265270.Google Scholar
Snape, J. W., Butterworth, K., Whitechurch, E. & Worland, A. J. (2001). Waiting for fine times: genetics of flowering time in wheat. Euphytica 119, 185190.Google Scholar
Stelmakh, A. F., Litvinenko, M. A. & Fayt, V. I. (2004). Vernalization requirement and photoperiod sensitiveness of modern genotypes of winter soft wheat. Collection Paper 5, 118127 (in Ukrainian).Google Scholar
Stelmakh, A. F., Zolotova, N. & Fayt, V. (2005). Genetic analysis of differences in duration vernalization requirement of winter bread wheat. Cereal Research Communications 33, 713718.Google Scholar
Toth, B., Galiba, G., Feher, E., Sutka, J. & Snape, W. (2003). Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theoretical and Applied Genetics 107, 509514.CrossRefGoogle ScholarPubMed
Venables, W. N. & Ripley, B. D. (2002). Modern Applied Statistics with S. New York, USA: Springer.Google Scholar
Wilhelm, E. P., Boulton, M. I., Al-Kaff, N., Balfourier, F., Bordes, J., Greenland, A. J., Powell, W. & Mackay, I. J. (2013). Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Theoretical and Applied Genetics 126, 22332243.CrossRefGoogle Scholar
Worland, A. J. (1996). The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89, 4957.Google Scholar
Worland, A. J., Borner, A., Korzun, V., Li, W. M., Petrovic, S. & Sayers, E. J. (1998). The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica 100, 385394.Google Scholar
Yan, L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J. & Dubcovsky, J. (2004). Allelic variation at the VRN-1 promoter region in polyploid wheat. Theoretical and Applied Genetics 109, 16771686.Google Scholar
Zikhali, M. & Griffiths, S. (2015). The effect of earliness per se (Eps) genes on flowering time in bread wheat. In Advances in Wheat Genetics: From Genome to Field. Proceedings of the 12th International Wheat Genetics Symposium (Eds Ogihara, Y., Takumi, S. & Handa, H.), pp. 339345. Tokyo, Japan: Springer.Google Scholar