Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T03:19:04.579Z Has data issue: false hasContentIssue false

Pollen-mediated transgene flow in maize grown in the Huang-huai-hai region in China

Published online by Cambridge University Press:  12 August 2010

K. ZHANG*
Affiliation:
The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, 27 Shanda South Road, Jinan 250100, P. R. China School of Life Science, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
Y. LI
Affiliation:
The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, 27 Shanda South Road, Jinan 250100, P. R. China School of Life Science, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
L. LIAN
Affiliation:
The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, 27 Shanda South Road, Jinan 250100, P. R. China School of Life Science, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
*
*To whom all correspondence should be addressed. E-mail: [email protected]

Summary

In order to study pollen-mediated gene flow in transgenic maize (Zea mays L.) in the Huang-huai-hai region of China, field trials were conducted in Jinan, Shandong Province in 2006 and 2007. The frequencies of gene flow from the donor plots, planted with transgenic maize as a pollen source, to the receptor plots, planted with non-transgenic maize, under different temporal or spatial separations were evaluated. The results showed that the frequency of pollen-mediated gene flow of the als gene from transgenic maize to non-transgenic maize decreased significantly with increasing distance. No gene flow was detected at 300 m. At a distance of 30 m, delaying the planting date of the transgenic maize by 1 week decreased the frequency of gene flow by 70%. A delay of 2 weeks decreased the gene flow frequency by more than 90%, while no gene flow was seen when the sowing date was delayed by 3 weeks. The results suggest that an appropriate isolation distance of 300 m or a temporal separation of 3 weeks could prevent gene flow from transgenic maize to non-transgenic maize in the Huang-huai-hai region.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, S. R., Lauer, M. J., Schoper, J. B. & Shibles, R. M. (2004). Pollination timing effects on kernel set and silk receptivity in four maize hybrids. Crop Science 44, 464473.CrossRefGoogle Scholar
Angevin, F., Klein, E. K., Choimet, C., Gauffreteau, A., Lavigne, C., Messean, A. & Meynard, J. M. (2008). Modelling impacts of cropping systems and climate on maize cross-pollination in agricultural landscapes: the MAPOD model. European Journal of Agronomy 28, 471484.CrossRefGoogle Scholar
Aylor, D. E. (2002). Settling speed of corn (Zea mays) pollen. Journal of Aerosol Science 33, 16011607.CrossRefGoogle Scholar
Aylor, D. E. (2004). Survival of maize (Zea mays) pollen exposed in the atmosphere. Agricultural and Forest Meteorology 123, 125133.CrossRefGoogle Scholar
Bannert, M. & Stamp, P. (2007). Cross-pollination of maize at long distance. European Journal of Agronomy 27, 4451.CrossRefGoogle Scholar
Bannert, M., Vogler, A. & Stamp, P. (2008). Short-distance cross-pollination of maize in a small-field landscape as monitored by grain color markers. European Journal of Agronomy 29, 2932.CrossRefGoogle Scholar
Bassetti, P. & Westgate, M. E. (1994). Floral asynchrony and kernel set in maize quantified by image analysis. Agronomy Journal 86, 699703.CrossRefGoogle Scholar
Bateman, A. J. (1947). Contamination of seed crops II. Wind pollination. Heredity 1, 235246.CrossRefGoogle Scholar
Beckie, H. J. & Hall, L. M. (2008). Simple to complex: modelling crop pollen-mediated gene flow. Plant Science 175, 615628.CrossRefGoogle Scholar
Bock, A-K., Lheureux, K., Libeau-Dulos, M., Nilsagard, H. & Rodriguez-cerezo, E. (2002). Scenarios for Co-existence of Genetically Modified, Conventional and Organic Crops in European Agriculture. Technical Report EUR 20394 EN. Brussels, Belgium: European Commission.Google Scholar
Devos, Y., Reheul, D. & De Schrijver, A. (2005). The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization. Environmental Biosafety Research 4, 7187.CrossRefGoogle ScholarPubMed
Di-Giovanni, F., Kevan, P. G. & Nasr, M. E. (1995). The variability in settling velocities of some pollen and spores. Grana 34, 3944.CrossRefGoogle Scholar
Eastham, K. & Sweet, J. (2002). Genetically Modified Organisms (GMOs): The Significance of Gene Flow through Pollen Transfer. Environmental Issue Report Number 28. Copenhagen, Denmark: European Environment Agency.Google Scholar
Emberlin, J., Adams-Groom, B. & Tidmarsh, J. (1999). A Report on the Dispersal of Maize Pollen. Worcester, UK: Soil Association, National Pollen Research Unit, University College Worcester.Google Scholar
EU (2003). Regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC. Official Journal of the European Union L268, 2428.Google Scholar
Glover, J. (2002). Gene Flow Study: Implications for the Release of Genetically Modified Crops in Australia. Canberra, Australia: Bureau of Rural Sciences.Google Scholar
Goggi, A. S., Caragea, P., Lopez-Sanchez, H., Westgate, M., Arritt, R. & Clark, C. (2006). Statistical analysis of outcrossing between adjacent maize grain production fields. Field Crops Research 99, 147157.CrossRefGoogle Scholar
Goggi, A. S., Lopez-Sanchez, H., Caragea, P., Westgate, M., Arritt, R. & Clark, C. A. (2007). Gene flow in maize fields with different local pollen densities. International Journal of Biometeorology 51, 493503.CrossRefGoogle ScholarPubMed
Halsey, M. E., Remund, K. M., Davis, C. A., Qualls, M., Eppard, P. J. & Berberich, S. A. (2005). Isolation of maize from pollen-mediated gene flow by time and distance. Crop Science 45, 21722185.CrossRefGoogle Scholar
Ingram, J. (2000). The separation distances required to ensure cross-pollination is below specified limits in non-seed crops of sugar beet, maize and oilseed rape. Plant Varieties and Seeds 13, 181199.Google Scholar
James, C. (2008). Global Status of Commercialized Biotech/GM Crops: 2008. ISAAA Brief 39. Ithaca, NY: ISAAA.Google Scholar
James, C. (2009). Global Status of Commercialized Biotech/GM Crops: 2009. The First Fourteen Years, 1996 to 2009. ISAAA Brief 41-2009. Ithaca, NY: ISAAA.Google Scholar
Langhof, M., Hommel, B., Husken, A., Schiemann, J., Wehling, P., Wilhelm, R. & Ruhl, G. (2008). Coexistence in maize: do nonmaize buffer zones reduce gene flow between maize fields? Crop Science 48, 305316.CrossRefGoogle Scholar
Li, G., Yang, A., Zhang, J., Bi, Y. & Shan, L. (2001). Transformation of calli from maize and regeneration of herbicide-resistant plantlets. Chinese Science Bulletin 46, 563565.CrossRefGoogle Scholar
Li, G., Zhang, Q., Zhang, J., Bi, Y. & Shan, L. (2002). Establishment of multiple shoot clumps from maize (Zea mays L.) and regeneration of herbicide-resistant transgenic plantlets. Science in China (Life Sciences) 45, 4049.CrossRefGoogle ScholarPubMed
Luna, V. S., Figueroa, M. J., Baltazar, M. B., Gomez, L. R., Townsend, R. & Schoper, J. B. (2001). Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Science 41, 15511557.CrossRefGoogle Scholar
Ma, B. L., Subedi, K. D. & Reid, L. M. (2004). Extent of cross-fertilization in maize by pollen from neighboring transgenic hybrids. Crop Science 44, 12731282.CrossRefGoogle Scholar
Mazur, B. J., Chui, C. F. & Smith, J. K. (1987). Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiology 85, 11101117.CrossRefGoogle ScholarPubMed
Messeguer, J., Penas, G., Ballester, J., Bas, M., Serra, J., Salvia, J., Palaudelmas, M. & Mele, E. (2006). Pollen-mediated gene flow in maize in real situations of coexistence. Plant Biotechnology Journal 4, 633645.CrossRefGoogle ScholarPubMed
Palaudelmàs, M., Melé, E., Peñas, G., Pla, M., Nadal, A., Serra, J., Salvia, J. & Messeguer, J. (2008). Sowing and flowering delays can be an efficient strategy to improve coexistence of genetically modified and conventional maize. Crop Science 48, 24042413.CrossRefGoogle Scholar
Permingeat, H. R., Romagnoli, M. V. & Vallejos, R. H. (1998). A simple method for isolating high yield and quality DNA from cotton (Gossypium hirsutum L.) leaves. Plant Molecular Biology Reporter 16, 16.CrossRefGoogle Scholar
Pla, M., La Paz, J. L., Penas, G., García, N., Palaudelmàs, M., Esteve, T., Messeguer, J. & Melé, E. (2006). Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study. Transgenic Research 15, 219228.CrossRefGoogle Scholar
Pleasants, J. M., Hellmich, R. L., Dively, G. P., Sears, M. K., Stanley-Horn, D. E., Mattila, H. R., Foster, J. E., Clark, P. & Jones, G. D. (2001). Corn pollen deposition on milkweeds in and near cornfields. Proceedings of the National Academy of Sciences of the United States of America 98, 1191911924.CrossRefGoogle ScholarPubMed
Porta, G. D., Ederle, D., Bucchini, L., Prandi, M., Verderio, A. & Pozzi, C. (2008). Maize pollen mediated gene flow in the Po valley (Italy): source–recipient distance and effect of flowering time. European Journal of Agronomy 28, 255265.CrossRefGoogle Scholar
Raynor, G. S., Ogden, E. C. & Hayes, J. V. (1972). Dispersion and deposition of corn pollen from experimental sources. Agronomy Journal 64, 420427.CrossRefGoogle Scholar
Simpson, E. C., Norris, C. E., Law, J. R., Thomas, J. E. & Sweet, J. B. (1999). Gene flow in genetically modified herbicide tolerant oilseed rape (Brassica napus) in the UK. In Gene Flow and Agriculture: Relevance for Transgenic Crops (Ed. Lutman, P. J. W.), pp. 7581. BCPC Proceedings 72. Surrey, UK: British Crop Protection Council.Google Scholar
Stevens, W. E., Berberich, S. A., Sheckell, P. A., Wiltse, C. C., Halsey, M. E., Horak, M. J. & Dunn, D. J. (2004). Optimizing pollen confinement in maize grown for regulated products. Crop Science 44, 21462153.CrossRefGoogle Scholar
Treu, R. & Emberlin, J. (2000). Pollen Dispersal in the Crops Maize (Zea mays), Oilseed rape (Brassica napus ssp. oleifera), Potatoes (Solanum tuberosum), Sugar beet (Beta vulgaris ssp. vulgaris), and wheat (Triticum aestivum): Evidence from Publications. Worcester, UK: Soil Association, National Pollen Research Unit, University College Worcester.Google Scholar
Uribelarrea, M., Carcova, J., Otegui, M. E. & Westgate, M. E. (2002). Pollen production, pollination dynamics, and kernel set in maize. Crop Science 42, 19101918.CrossRefGoogle Scholar
Weber, W. E., Bringezu, T., Broer, I., Eder, J. & Holz, F. (2007). Coexistence between GM and non-GM maize crops – tested in 2004 at the field scale level (erprobungsanbau 2004). Journal of Agronomy and Crop Science 193, 7992.CrossRefGoogle Scholar
Wei, W. & Ma, K. P. (2002). How should we face the problems of gene flow and gene contamination? Review of China Agricultural Science and Technology 4, 1015 (in Chinese)..Google Scholar
Westgate, M. E., Lizaso, J. & Batchelor, W. (2003). Quantitative relationships between pollen shed density and grain yield in maize. Crop Science 43, 934942.CrossRefGoogle Scholar