Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T05:40:42.726Z Has data issue: false hasContentIssue false

The partition of phosphorus and aneurin in relation to phosphatase in the colostrum and milk of the cow

Published online by Cambridge University Press:  27 March 2009

R. Chanda
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr
E. C. Owen
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr

Extract

The partitions of phosphorus and aneurin were determined in the colostrum and in the transitional and mature milk of Ayrshire cows with the following results:

1. The ratio of nitrogen to phosphorus was 11:1 in the first mammary secretion but dropped to a minimum value of 4·5:1 a week later. Thereafter the ratio increased throughout lactation attaining a value of 7·2:1 at the fortieth week. The first colostrum was very rich in both phosphorus and nitrogen.

2. Phosphatase titre in colostrum was 154 units in the first post-partum secretion but decreased to 10 during the first five days of lactation. The titre fluctuated slightly during the next few days and increased gradually thereafter, attaining 189 units in the 38th week of lactation.

3. Phosphatase was correlated positively with inorganic-P (r= +0·83) and negatively with both ester-P (r= −0·94) and lipid-P (r= −0·70), all P fractions being expressed as percentages of total P. The percentage of phosphorus present as casein was initially 19–21%, but was only 14% in late lactation.

4. The first colostrum contained 74 μg. aneurin/100 ml. skim milk. This value became 35 in midlactation and only 28 in late lactation. The corresponding figures for cocarboxylase were 20, 5·7 and 2·3 μg./100 ml. respectively, and for protein-bound aneurin 14, 3·2 and 1·7 respectively. Both cocarboxylase and protein-bound aneurin were negatively correlated with phosphatase.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azarme, E. (1938). J. Dairy Res. 9, 121.CrossRefGoogle Scholar
Braude, R., Coates, M. E., Henry, K. M., Kon, S. K., Rowland, S. J., Thompson, S. Y. & Walker, D. M. (1947). Brit. J. Nutrit. 1, 64.CrossRefGoogle Scholar
Chanda, R., McNaught, M. L. & Owen, E. C. (1951). Unpublished observations.Google Scholar
Chanda, R., McNaught, M. L. & Owen, E. C. (1952). Biochem. J. 51, 543.CrossRefGoogle Scholar
Chanda, R. & Owen, E. C. (1951). Biochem. J. 50, 100.CrossRefGoogle Scholar
Chanda, R., Owen, E. C. & Cramond, B. (1951). Brit. J. Nutrit. 5, 228.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. Biol. Chem. 66, 375.CrossRefGoogle Scholar
Folley, S. J. (1949). Biol. Rev. 24, 316.CrossRefGoogle Scholar
Folley, S. J. & Kay, H. D. (1936). Enzymologia, 1, 48.Google Scholar
Folley, S. J. & White, P. (1936). Proc. Roy. Soc. B, 120, 346.Google Scholar
Graham, W. R. & Kay, H. D. (1934). J. Dairy Res. 5, 54.CrossRefGoogle Scholar
Horecker, B. L., Ma, T. S. & Haas, E. (1940). J. Biol. Chem. 136, 775.CrossRefGoogle Scholar
Houston, J., Kon, S. K. & Thompson, S. Y. (1940). J. Dairy Res. 11, 145.CrossRefGoogle Scholar
Jansen, B. C. P. (1936). Rec. Trav. Chim. Pays-Bas, 55, 1046.CrossRefGoogle Scholar
Kannan, A. & Basu, K. P. (1948). Indian J. Dairy Sci. 1, 16.Google Scholar
Kay, H. D., Aschaffenburg, B. & Neave, F. K. (1939). Tech. Commun. Imp. Bur. Dairy Sci., Reading, no. 1.Google Scholar
Kay, H. D. & Graham, W. B. (1935). J. Dairy Res. 6, 191.CrossRefGoogle Scholar
Kinnersley, H. W. & Peters, B. A. (1938). Biochem. J. 32, 1516.CrossRefGoogle Scholar
Moog, F. (1948). Biol. Rev. 21, 41.CrossRefGoogle Scholar
Morris, S. & Bay, S. C. (1939). Biochem. J. 33, 1217.CrossRefGoogle Scholar
Neave, F. K. (1939). J. Dairy Res. 10, 475.CrossRefGoogle Scholar
Owen, E. C., Smith, J. A. B. & Wright, N. C. (1943). Biochem. J. 37, 44.CrossRefGoogle Scholar
Popjak, G. & Muir, H. (1950). Biochem. J. 46, 103.CrossRefGoogle Scholar
Shohl, A. T. (1939). Mineral Metabolism. New York: Beinhold.Google Scholar
Smith, J. A. B., Howat, G. B. & Ray, S. C. (1938). J. Dairy Res. 9, 310.CrossRefGoogle Scholar
Theiler, A. & Green, H. H. (1932). Nutrit. Abstr. Rev. 1, 359.Google Scholar
Thompson, S. Y. (1945). Ph.D. Thesis, University of Reading.Google Scholar
Williams-Ashman, H. G. (1948). Biochem. J. 42, li.Google Scholar
Zilversmit, D. B., Entenman, C. & Chaikoff, I. L. (1948). J. Biol. Chem. 176, 193.CrossRefGoogle Scholar