Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T00:32:44.500Z Has data issue: false hasContentIssue false

One century of Nordic barley breeding: nitrogen use efficiency, agronomic traits and genetic diversity

Published online by Cambridge University Press:  03 October 2016

A. RAJALA*
Affiliation:
Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, FI-31600 Jokioinen, Finland
P. PELTONEN-SAINIO
Affiliation:
Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, FI-31600 Jokioinen, Finland
M. JALLI
Affiliation:
Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, FI-31600 Jokioinen, Finland
L. JAUHIAINEN
Affiliation:
Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, FI-31600 Jokioinen, Finland
A. HANNUKKALA
Affiliation:
Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, FI-31600 Jokioinen, Finland
T. TENHOLA-ROININEN
Affiliation:
Natural Resources Institute Finland (Luke), Green Technology, FI-31600 Jokioinen, Finland
L. RAMSAY
Affiliation:
James Hutton Institute, Genetics and Breeding, Invergowrie, Dundee DD2 5DA, Scotland, UK
O. MANNINEN
Affiliation:
Boreal Plant Breeding Ltd, 31600 Jokioinen, Finland
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The current study aimed to evaluate breeding effect on nitrogen use efficiency (NUE), its components and some agronomic traits and disease resistance in barley by using extensive germplasm covering 72 landraces and 123 cultivars released since 1910. Trials were established in southern Finland with a modified strip-plot experimental design. Prior to sowing, blocks were placement fertilized with compound nitrogen : phosphorus : potassium (NPK) fertilizer (N-P-K: 20–3–8) at the rate of 35 and 70 kg N/ha and unfertilized plots were placed at the other end of the fertilization block. The germplasm collection was genotyped with 1536 single nucleotide polymorphism (SNP) markers and phenotyped during a 2-year field experiment in 2011/12. Independent of row type, a positive breeding effect was evident in NUE and for other plant N traits, except that grain N slightly decreased. Breeding has improved NUE by 0·08 kg/year (26% over the century). Nitrogen utilization and N uptake efficiencies were also improved by breeding as were straw length, lodging tolerance, grain yield and yield components, without any sign of levelling-off. Bred cultivars were more resistant to leaf-damaging diseases, especially to net blotch. The SNP data indicated no reduction in overall genetic diversity. However, genetic diversity differed along the barley chromosomes showing either reduced or increased diversity in certain regions when landraces were compared with modern varieties.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abeledo, L. G., Calderini, D. F. & Slafer, G. A. (2003). Genetic improvement of barley yield potential and its physiological determination in Argentina (1944–1988). Euphytica 130, 325334.CrossRefGoogle Scholar
Abeledo, L. G., Calderini, D. F. & Slafer, G. A. (2008). Nitrogen economy in old and modern malting barleys. Field Crops Research 106, 171178.CrossRefGoogle Scholar
Anbessa, Y. & Juskiw, P. (2012). Review: strategies to increase nitrogen use efficiency of spring barley. Canadian Journal of Plant Science 92, 617625.CrossRefGoogle Scholar
Anbessa, Y., Juskiw, P., Good, A., Nyachiro, J. & Helm, J. (2009). Genetic variability in nitrogen use efficiency of spring barley. Crop Science 49, 12591269.CrossRefGoogle Scholar
Austin, R. B., Bingham, J., Blackwell, R. D., Evans, L. T., Ford, M. A., Morgan, C. L. & Taylor, M. (1980). Genetic improvements in winter wheat yields since 1900 and associated changes. Journal of Agricultural Science, Cambridge 94, 675689.CrossRefGoogle Scholar
Barraclough, P. B., Howarth, J. R., Jones, J., Lopez-Bellido, R., Parmat, S., Shepherd, C. E. & Hawkesford, M. J. (2010). Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement. European Journal of Agronomy 33, 111.CrossRefGoogle Scholar
Beatty, P. H., Anbessa, Y., Juskiw, P., Carroll, R. T., Wang, J. & Good, A. G. (2010). Nitrogen use efficiencies of spring barley grown under varying nitrogen conditions in the field and growth chamber. Annals of Botany 105, 11711182.CrossRefGoogle ScholarPubMed
Bertholdsson, N-O. & Kolodinska-Brantestam, A. (2009). A century of Nordic barley breeding – effects on early vigour root and shoot growth, straw length, harvest index and grain weight. European Journal of Agronomy 30, 266274.CrossRefGoogle Scholar
Bingham, I. J., Karley, A. J., White, P. J., Thomas, W. T. B. & Russell, J. R. (2012). Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. European Journal of Agronomy 42, 4958.CrossRefGoogle Scholar
Bongiovanni, R. & Lowenberg-Deboer, J. (2004). Precision agriculture and sustainability. Precision Agriculture 5, 359387.CrossRefGoogle Scholar
Bulman, P., Mather, D. E. & Smith, D. L. (1993). Genetic improvement of spring barley cultivars grown in eastern Canada from 1919 to 1988. Euphytica 71, 3548.CrossRefGoogle Scholar
Close, T. J., Bhat, P. R., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., Druka, A., Stein, N., Svensson, J. T., Wanamaker, S., Bozdag, S., Roose, M. L., Moscou, M. J., Chao, S., Varshney, R. K., Szűcs, P., Sato, K., Hayes, P. M., Matthews, D. E., Kleinhofs, A., Muehlbauer, G. J., DeYoung, J., Marshall, D. F., Madishetty, K., Fenton, R. D., Condamine, P., Graner, A. & Waugh, R. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10, 582. doi: 10.1186/1471-2164-10-582.CrossRefGoogle ScholarPubMed
European Commission (EC) (2009). Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides (Text with EEA relevance). Official Journal of the European Union 309L, 7186.Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. (2005). Detecting the number of clusters of individuals using software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620.CrossRefGoogle ScholarPubMed
Falush, D., Stephens, M. & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 15671587.CrossRefGoogle ScholarPubMed
Fetch, T. G. & Steffenson, B. J. (1999). Rating scales for assessing infection responses of barley infected with Cochliobolus sativus . Plant Disease 83, 213217.CrossRefGoogle ScholarPubMed
Fishbeck, G. (1992). Barley cultivar development in Europe – success in the past and possible changes in the future. In Barley Genetics VI, Vol II, Proceedings of the Sixth International Barley Genetics Symposium, July 22–27, 1991, Sweden (Eds Munck, L., Kirkegaard, K. & Jensen, B.), pp. 885901. Copenhagen, Denmark: Munksgaard International Publishers Ltd.Google Scholar
Foulkes, M. J., Hawkesford, M. J., Barraclough, P. B., Holdsworth, M. J., Kerr, S., Kightley, S. & Shewry, P. R. (2009). Identifying traits to improve the nitrogen economy of wheat: recent advances and future prospects. Field Crops Research 114, 39342.CrossRefGoogle Scholar
Gaju, O., Allard, V., Martre, P., Snape, J. W., Heumez, E., LeGouis, J., Moreau, D., Bogard, M., Griffiths, S., Orford, S., Hubbart, S. & Foulkes, M. J. (2011). Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Research 123, 139152.CrossRefGoogle Scholar
Graner, A., Ludwig, W. F. & Melchinger, A. E. (1994). Relationships among European barley germplasm: II. Comparison of RFLP and pedigree data. Crop Science 34, 11991205.CrossRefGoogle Scholar
Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9, 13221332.CrossRefGoogle ScholarPubMed
Huggins, D., Pan, W. & Smith, J. (2010). Yield, protein and nitrogen use efficiency of spring wheat: evaluating field-scale performance. In Climate Friendly Farming: Final Report. Improving the Carbon Footprint of Agriculture in the Pacific Northwest (Eds Kruger, C., Yorgey, G., Chen, S., Collins, H., Feise, C., Frear, C., Granatstein, D., Higgins, S., Huggins, D., MacConnell, C, K. Painter, & Stöckle, C.), chapter 17, pp. 124. CSANR Research Report 2010–001. Pullman, WA, USA: Washington State University.Google Scholar
Jackson, L. F. & Webster, R. K. (1976). Race differentiation, distribution and frequency of Rhynchosporium secalis in California. Phytopathology 66, 719725.CrossRefGoogle Scholar
Jalli, M. (2010). The virulence of Finnish Pyrenophora teres f. teres isolates and its implications for resistance breeding . PhD thesis, University of Helsinki, Finland.Google Scholar
Koebner, R. M. D., Donini, P., Reeves, J. C., Cooke, R. J. & Law, J. R. (2003). Temporal flux in the morphological and molecular diversity of UK barley. Theoretical and Applied Genetics 106, 550558.CrossRefGoogle ScholarPubMed
Kolodinska-Brantestam, A., von Bothmer, R., Dayteg, C., Rashal, I., Tuvesson, S. & Weibull, J. (2004). Inter simple sequence repeat analysis of genetic diversity and relationships in cultivated barley of Nordic and Baltic region. Hereditas 14, 186192.CrossRefGoogle Scholar
Kolodinska-Brantestam, A., von Bothmer, R., Dayteg, C., Rashal, I., Tuvesson, S. & Weibull, J. (2007). Genetic diversity changes and relationships in spring barley (Hordeum vulgare L.) germplasm of Nordic and Baltic areas as shown by SSR markers. Genetic Resources and Crop Evolution 54, 749758.CrossRefGoogle Scholar
Lemaire, G., Recous, S. & Mary, B. (2004). Managing residues and nitrogen in intensive cropping systems. New understanding for efficient recovery by crops. In New Directions for a Diverse Planet. Proceedings of the 4th International Crop Science Congress, 26 Sep – 1 Oct 2004, Brisbane, Australia. Erina, NSW, Australia: The Regional Institute Online Publishing. Available from http://www.regional.org.au/au/asa/2004/symposia/2/6/936_lemaireg.htm (verified 12 July 2016).Google Scholar
Lillemo, M., Reitan, L. & Bjørnstad, Å. (2010). Increasing impact of plant breeding on barley yields in central Norway from 1946 to 2008. Plant Breeding 129, 484490.Google Scholar
Malysheva-Otto, L., Ganal, M. W., Law, J. R., Reeves, J. C. & Röder, M. S. (2007). Temporal trends of genetic diversity in European barley cultivars (Hordeum vulgare L.). Molecular Breeding 20, 309322.CrossRefGoogle Scholar
Manninen, O. & Nissilä, E. (1997). Genetic diversity among Finnish six-rowed barley cultivars based on pedigree information and DNA markers. Hereditas 126, 8793.CrossRefGoogle Scholar
Matus, I. A. & Hayes, P. M. (2002). Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45, 10951106.CrossRefGoogle ScholarPubMed
Melchinger, A. E., Graner, A., Singh, M. & Messmer, M. M. (1994). Relationships among European barley germplasm: I. Genetic diversity among winter and spring cultivars revealed by RFLPs. Crop Science 34, 11911199.CrossRefGoogle Scholar
Moll, R. H., Kamprath, E. J. & Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency to nitrogen utilization. Agronomy Journal 74, 562564.CrossRefGoogle Scholar
Montemurro, F., Maiorana, F., Ferri, D. & Convertini, G. (2006). Nitrogen indicators, uptake and utilization efficiency in a maize and barley rotation cropped at different levels and sources of N fertilization. Field Crops Research 99, 114124.CrossRefGoogle Scholar
Muurinen, S., Slafer, G. A. & Peltonen-Sainio, P. (2006). Breeding effects on nitrogen use efficiency of spring cereals under northern conditions. Crop Science 46, 561568.CrossRefGoogle Scholar
Oerke, E.-C. (2006). Crop losses to pests. Journal of Agricultural Science, Cambridge 144, 3143.CrossRefGoogle Scholar
Ortiz, R., Nurminiemi, M., Madsen, S., Rognli, O. A. & Bjørnstad, Å. (2002). Genetics gains in Nordic spring barley breeding over sixty years. Euphytica 126, 283289.CrossRefGoogle Scholar
Peakall, R. & Smouse, P. E. (2006). GENALEX 6: genetic analysis in excel. Accession genetic software for teaching and research. Molecular Ecological Notes 6, 288295.CrossRefGoogle Scholar
Peakall, R. & Smouse, P. E. (2012). GenAlEx 6·5: genetic analysis in Excel. Population genetic software for teaching and research- an update. Bioinformatics 28, 25372539.CrossRefGoogle ScholarPubMed
Peltonen-Sainio, P. & Jauhiainen, L. (2010). Cultivar improvement and environmental variability in yield removed nitrogen of spring cereals and rapeseed in northern growing conditions according to a long-term dataset. Agricultural and Food Science 19, 341353.CrossRefGoogle Scholar
Peltonen-Sainio, P. & Rajala, A. (2007). Duration of vegetative and generative development phases in oat cultivars released since 1921. Field Crops Research 101, 7279.CrossRefGoogle Scholar
Peltonen-Sainio, P., Kangas, A., Salo, Y. & Jauhiainen, L. (2007). Grain number dominates grain weight in temperate cereal yield determination: evidence based on 30 years of multi-location trials. Field Crops Research 100, 179188.CrossRefGoogle Scholar
Peltonen-Sainio, P., Jauhiainen, L. & Laurila, I. P. (2009). Cereal yield trends in northern European conditions: changes in yield potential and its realisation. Field Crops Research 110, 8590.CrossRefGoogle Scholar
Peltonen-Sainio, P., Jauhiainen, L. & Nissilä, E. (2012). Improving cereal protein yields for high latitude conditions. European Journal of Agronomy 39, 18.CrossRefGoogle Scholar
Peltonen-Sainio, P., Salo, T., Jauhiainen, L., Lehtonen, H. & Sieviläinen, E. (2015). Static yields and quality issues: is the agri-environment program the primary driver? AMBIO 44, 544556.CrossRefGoogle ScholarPubMed
Pritchard, J. K., Stephens, M. & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
Przulj, N. & Momcilovic, V. (2001). Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed spring barley II. Nitrogen translocation. European Journal of Agronomy 15, 255265.CrossRefGoogle Scholar
Przulj, N. & Momcilovic, V. (2003). Dry matter and nitrogen accumulation and use in spring barley. Plant Soil and Environment 49, 3647.CrossRefGoogle Scholar
Rajala, A., Peltonen-Sainio, P., Kauppila, R., Wilhelmson, A., Reinikainen, P. & Kleemola, J. (2007). Within-field variation in grain yield, yield components and quality traits of two-row barley. Journal of Agricultural Science, Cambridge 145, 445454.CrossRefGoogle Scholar
Russell, J. R., Ellis, R. P., Thomas, W. T. B., Waugh, R., Provan, J., Booth, A., Fuller, J., Lawrence, P., Young, G. & Powell, W. (2000). A retrospective analysis of spring barley germplasm development from ‘foundation genotypes’ to currently successful cultivars. Molecular Breeding 6, 553568.CrossRefGoogle Scholar
Sadras, V. O. & Lawson, C. (2013). Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. European Journal of Agronomy 46, 3441.CrossRefGoogle Scholar
Sinclair, T. R. & Rufty, T. W. (2012). Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Security 1, 9498.CrossRefGoogle Scholar
Slafer, G. A. (2003). Genetic basis of yield as viewed from a crop physiologist's perspective. Annals of Applied Biology 142, 117128.CrossRefGoogle Scholar
Stukenbrock, E. H. & McDonald, B. A. (2009). Population genetics of fungal and oomycete effectors involved in gene-for gene interactions. Molecular Plant-Microbe Interactions 22, 371380.CrossRefGoogle ScholarPubMed
Sylvester-Bradley, R. & Kindred, D. R. (2009). Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany 60, 19391951.CrossRefGoogle Scholar
Tekauz, A. (1985). A numerical scale to classify reactions of barley to Pyrenophora teres . Canadian Journal of Plant Pathology 7, 181183.CrossRefGoogle Scholar
Tinker, N. A., Fortin, M. G. & Mather, D. E. (1993). Random amplified polymorphic DNA and pedigree relationships in spring barley. Theoretical and Applied Genetics 85, 976984.CrossRefGoogle ScholarPubMed
Tondelli, A., Xu, X., Moragues, M., Sharma, R., Schnaithmann, F., Ingvardsen, C., Manninen, O., Comadran, J., Russell, J., Waugh, R., Schulman, A. H., Pillen, K., Rasmussen, S. K., Kilian, B., Cattivelli, L., Thomas, W. T. B. & Flavell, A. J. (2013). Structural and temporal variation in genetic diversity of European spring two-row barley cultivars and association mapping of quantitative traits. Plant Genome 6, 114. doi: 10.3835/plantgenome2013.03.0007 CrossRefGoogle Scholar
Vold, A. (1998). A generalization of ordinary yield responses functions. Ecological Modelling 108, 227236.CrossRefGoogle Scholar
Walters, D. R., Avrova, A., Bingham, I. J., Burnett, F. J., Fountaine, J., Havis, N. D., Hoad, S. P., Hughes, G., Looseley, M., Oxley, S. J. P., Renwick, A., Topp, C. F. E. & Newton, A. C. (2012). Control of foliar diseases in barley: towards an integrated approach. European Journal of Plant Pathology 133, 3373.CrossRefGoogle Scholar
White, P. J. & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany 105, 10731080.CrossRefGoogle ScholarPubMed
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar
Supplementary material: File

Rajala supplementary material

Table

Download Rajala supplementary material(File)
File 18.6 KB