Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T12:21:17.697Z Has data issue: false hasContentIssue false

Morpho-phenological diversity among Tunisian natural populations of Brachypodium hybridum

Published online by Cambridge University Press:  22 July 2014

M. NEJI
Affiliation:
Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cédria BP 901, 2050 HammamLlif, Tunisia Laboratory of Molecular Genetic, Department of Agricultural and Environmental Sciences (DISAA), Via Celoria, 2 – 20133 – Milan, Italy
F. GEUNA
Affiliation:
Laboratory of Molecular Genetic, Department of Agricultural and Environmental Sciences (DISAA), Via Celoria, 2 – 20133 – Milan, Italy
W. TAAMALLI
Affiliation:
Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cédria BP 901, 2050 HammamLlif, Tunisia
Y. IBRAHIM
Affiliation:
Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cédria BP 901, 2050 HammamLlif, Tunisia
M. SMIDA
Affiliation:
Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cédria BP 901, 2050 HammamLlif, Tunisia
M. BADRI
Affiliation:
Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cédria BP 901, 2050 HammamLlif, Tunisia
C. ABDELLY
Affiliation:
Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cédria BP 901, 2050 HammamLlif, Tunisia
M. GANDOUR*
Affiliation:
Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cédria BP 901, 2050 HammamLlif, Tunisia
*
To whom all correspondence should be addressed. Email: [email protected]

Summary

Brachypodium hybridum belongs to the Poaceae grass subfamily. It has a close genetic relationship with temperate cereal crops, which means that it can be used as a model for temperate cereal and grass crops. In order to improve knowledge on the genetic diversity of this species, 145 lines of B. hybridum representative of nine populations and all the ecoregions of Tunisia were characterized on the basis of 18 morpho-phenologic features. The results show a considerable variation between populations and ecoregions in all traits studied. Variation was relatively higher for reproductive than vegetative traits. The majority of traits showed very low to high heritability with low border value for average length of spikelet (ALS) and an average value of 0·64. It is noticeable that high values of heritability were observed for most vegetative descriptors, with low values for reproductive ones. Differentiation between populations (QST) varied from 0·02 for ALS to 0·78 for average length of leaves with a mean value across traits of 0·4, which confirms the wide intra-population variation in Tunisian natural population of B. hybridum. Pairwise QST showed that the greatest differentiation among populations was registered between Ain Drahem and Jbel Zaghouan and the smallest between Haouria and Raoued. Overall, the Ain Draham population showed the largest differentiation from the rest of the populations. To infer the effect of geographic distribution of the species, a Mantel test was applied between observed pairwise differentiation and geographic distance between populations and between ecoregions: the results show a positive, but not significant, relationship. In addition a significant negative relationship was found between phenotypic diversity and altitude, indicating that genetic diversity decreased with increasing altitude. Taken together, the high levels of intra-population variation and the lack of correlation between genetic differentiation and geographic distribution suggest a potentially important rate of long-distance seed dispersal and confirm the role played by natural selection in the population structure of Tunisian natural populations of B. hybridum.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Assefa, K., Ketema, S., Tefera, H., Nguyen, H. T., Blum, A., Ayele, M., Bai, G., Simane, B. & Kefyalew, T. (1999). Diversity among germplasm lines of the Ethiopian cereal tef [Eragrostis tef (Zucc.) Trotter]. Euphytica 106, 8797.CrossRefGoogle Scholar
Assefa, K., Tefera, H., Merker, A., Kefyalew, T. & Hundera, F. (2001). Variability, heritability and genetic advance in pheno-morphic and agronomic traits of tef [Eragrostis tef (Zucc.) Trotter] germplasm from eight regions of Ethiopia. Hereditas 134, 103113.CrossRefGoogle ScholarPubMed
Assefa, K., Merker, A. & Tefera, H. (2003). Multivariate analysis of diversity of tef [Eragrostis tef (Zucc.) Trotter] germplasm from western and southern Ethiopia. Hereditas 138, 228236.CrossRefGoogle ScholarPubMed
Brkljacic, J., Grotewold, E., Scholl, R., Mockler, T., Garvin, D. F., Vain, P., Brutnell, T., Sibout, R., Bevan, M., Budak, H., Caicedo, A. L., Gao, C., Gu, Y., Hazen, S. P., Holt, B. F., Hong, S. Y., Jordan, M., Manzaneda, A. J., Mitchell-Olds, T., Mochida, K., Mur, L. A. J., Park, C. M., Sedbrook, J., Watt, M., Zheng, S. J. & Vogel, J. P. (2011). Brachypodium as a model for the grasses: today and the future. Plant Physiology 157, 313.CrossRefGoogle Scholar
Catalán, P., Müller, J., Hasterok, R., Jenkins, G., Mur, L. A., Langdon, T., Betekhtin, A., Siwinska, D., Pimentel, M. & López-Alvarez, D. (2012) Evolution and taxonomic split of the model grass Brachypodium distachyon. Annals of Botany 109, 385405.CrossRefGoogle ScholarPubMed
Chanyalew, S., Tefera, H. & Singh, H. (2009). Genetic variability, heritability, and trait relationships in recombinant inbred lines of tef (Eragrostis tef (Zucc.) Trotter). Research Journal of Agriculture and Biological Sciences 5, 474479.Google Scholar
Draper, J., Mur, L. A. J., Jenkins, G., Ghosh-Biswas, G. C., Bablak, P., Hasterok, R. & Routledge, A. P. M. (2001). Brachypodium distachyon: a new model system for functional genomics in grasses. Plant Physiology 127, 15391555.CrossRefGoogle ScholarPubMed
Ehtemam, M. H., Rahiminejad, M. R., Saeidi, H., Sayed Tabatabaei, B. E., Krattinger, S. & Keller, B. (2009). The relationships among the A genome bearing Triticum species as evidenced by SSRs in Iran. Wheat Information Service 108, 33.Google Scholar
Esparza-Martínez, J. H. & Foster, A. E. (1998). Genetic analysis of days to flowering and other characteristics of two-rowed barley. Agricultura –Tecnica en Mexico 24, 131144.Google Scholar
Fahliani, R. A., Khodambashi, M. & Houshmand, S. (2010). Estimation of the heritability of agro-morphological traits in rice (Oryza sativa L.) using F2:3 families. African Journal of Agricultural Research 5, 12971303.Google Scholar
Filiz, E., Ozdemir, B. S., Budak, F., Vogel, J. P., Tuna, M. & Budak, H. (2009). Molecular, morphological, and cytological analysis of diverse Brachypodium distachyon inbred lines. Genome 52, 876890.CrossRefGoogle ScholarPubMed
Hammami, R., Jouve, N., Cuadrado, A., Soler, C. & Gonzalez, J. M. (2011). Prolamin storage proteins and alloploidy in wild populations of the small grass Brachypodium distachyon (L.) P. Beauv. Plant Systematics and Evolution 297, 99111.CrossRefGoogle Scholar
International Brachypodium Initiative (IBI) (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763768.CrossRefGoogle Scholar
Jaroszewicz, A. M., Kosina, R. & Stankiewicz, P. R. (2012). RAPD, karyology and selected morphological variation in a model grass, Brachypodium distachyon. Weed Research 52, 204216.CrossRefGoogle Scholar
Jauhar, P. P. (2006). Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop Science 46, 18411859.CrossRefGoogle Scholar
Ketema, S. (1993). Tef (Eragrostis tef) Breeding, Genetic Resources, Agronomy, Utilization and Role in Ethiopian Agriculture. Addis Ababa, Ethiopia: Institute of Agricultural Research.Google Scholar
López-Alvarez, D., López-Herranz, M. L., Betekhtin, A. & Catalán, P. (2012). A DNA barcoding method to discriminate between the model plant Brachypodium distachyon and its close relatives B. stacei and B. hybridum (Poaceae). PLoS ONE 7, e51058. doi: 10.1371/journal.pone.0051058CrossRefGoogle Scholar
Mahjoub, A., Mguis, K., Rouaissi, M., Abdellaoui, R. & Ben Brahim, N. (2012). RAPD analysis of genetic diversity in natural populations of Aegilops geniculata Roth and Triticum durum Desf from Tunisia. Agriculture and Biology Journal of North America 3, 466475.CrossRefGoogle Scholar
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209220.Google Scholar
Morgan, K. K., Hicks, J., Spitze, K., Latta, L., Pfrender, M. E., Weaver, C. S., Ottone, M. & Lynch, M. (2001). Patterns of genetic architecture for life-history traits and molecular markers in a subdivided species. Evolution 55, 17531761.Google Scholar
Nascimento, W. F. de, Silva, E. F. da & Veasey, E. A. (2011) Agro-morphological characterization of upland rice accessions. Scientia Agricicola (Piracicaba, Brazil) 68, 652660.CrossRefGoogle Scholar
Pacurar, D. I. (2009). Turning a wild plant into a model – a déjà vu story. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37, 1724.Google Scholar
Qi, L., Friebe, B., Zhang, P. & Gill, B. S. (2007). Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Research 15, 319.CrossRefGoogle ScholarPubMed
Schwartz, C. J., Doyle, M. R., Manzaneda, A. J., Rey, P. J., Mitchell-Olds, T. & Amasino, R. M. (2010). Natural variation of flowering time and vernalization responsiveness in Brachypodium distachyon. Bioenergy Research 3, 3846.CrossRefGoogle Scholar
Spitze, K. (1993). Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135, 367374.CrossRefGoogle ScholarPubMed
Tefera, H., Assefa, K., Hundera, F., Kefyalew, T. & Teferra, T. (2003). Heritability and genetic advance in recombinant inbred lines of tef (Eragrostis tef). Euphytica 131, 9196.CrossRefGoogle Scholar
Trethowan, R. M. & Mujeeb-Kazi, A. (2008). Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Science 48, 12551265.CrossRefGoogle Scholar
Vogel, J. P., Tuna, M., Budak, H., Huo, N., Gu, Y. Q. & Steinwand, M. A. (2009). Development of SSR markers and analysis of diversity in Turkish populations of Brachypodium distachyon. BMC Plant Biology 9, 88. doi: 10.1186/1471-2229-9-88.CrossRefGoogle ScholarPubMed
Zribi, M., Anguela, T. P., Duchemin, B., Lili, Z., Wagner, W., Hasenauer, S. & Chehbouni, A. (2010). Relationship between soil moisture and vegetation in the kairouan plain region of Tunisia using low spatial resolution satellite data. Water Resources Research 46, W06508. doi: 10.1029/2009WR008196.CrossRefGoogle Scholar