Article contents
Modelling and inference of maize pollen emission rate with a Lagrangian dispersal model using Monte Carlo method
Published online by Cambridge University Press: 01 October 2020
Abstract
This work explores the uncertainty of the inferred maize pollen emission rate using measurements and simulations of pollen dispersion at Grignon in France. Measurements were obtained via deposition of pollen on the ground in a canopy gap; simulations were conducted using the two-dimensional Lagrangian Stochastic Mechanistic mOdel for Pollen dispersion and deposition (SMOP). First, a quantitative evaluation of the model's performance was conducted using a global sensitivity analysis to analyse the convergence behaviour of the results and scatter diagrams. Then, a qualitative study was conducted to infer the pollen emission rate and calibrate the methodology against experimental data for several sets of variable values. The analysis showed that predicted and observed values were in good agreement and the calculated statistical indices were mostly within the range of acceptable model performance. Furthermore, it was revealed that the mean settling velocity and vertical leaf area index are the main variables affecting pollen deposition in the canopy gap. Finally, an estimated pollen emission rate was obtained according to a restricted setting, where the model studied includes no deposition on leaves, no resuspension and with horizontal pollen fluctuations either taken into account or not. The estimated pollen emission rate obtained was nearly identical to the measured quantity. In conclusion, the findings of the current study show that the described methodology could be an interesting approach for accurate prediction of maize pollen deposition and emission rates and may be appropriate for other pollen types.
Keywords
- Type
- Crops and Soils Research Paper
- Information
- Copyright
- Copyright © The Author(s), 2020. Published by Cambridge University Press
References
- 3
- Cited by