Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T05:24:02.498Z Has data issue: false hasContentIssue false

The minerals in the clay fractions of a black cotton soil and a red earth from Hyderabad, Deccan State, India

Published online by Cambridge University Press:  27 March 2009

G. Nagelschmidt
Affiliation:
Chemistry Department, Rothamsted Experimental Station, Harpenden, Herts
A. D. Desai
Affiliation:
Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen
Alex. Muir
Affiliation:
Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen

Extract

The mineral compositions of the clays from a red earth and a black cotton soil from Hyderabad, Deccan State, India, occurring in close proximity in the field are determined. Both soils are derived from the same or from very similar parent rocks, a coarsely crystalline granite or gneiss.

For both soils there is practically no variation in the mineralogical composition of the clay throughout the profile, but for any given clay there is some variation with grain size. The main contrast between the two is that the red clay contains predominantly kaolinite or halloysite, whereas the black clay contains mainly beidellite, a member of the montmorillonite group. The topography appears to be the principal factor associated with this difference in minerals, and the processes of weathering believed to have produced the contrasted clays are discussed with reference to experiments on the leaching of felspar in the laboratory and on hydrothermal synthesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1940

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Correns, C. W. & Engelhardt, W. v. (1938). Chem. d. Erde, 12, 1.Google Scholar
Correns, C. W. & Mehmel, M. (1936). Z. Kristallogr. 94, 337.CrossRefGoogle Scholar
Denison, J. A., Fry, W. H. & Gile, P. L. (1929). Tech. Bull. U.S. Dep. Agric. no. 128.Google Scholar
Desai, A. D. (1939). Thesis, University, Aberdeen. To be published as Bulletin of the Dept. Agric., Hyderabad.Google Scholar
Drosdoff, M. & Truog, E. (1935). J. Amer. Soc. Agron. 27, 312.CrossRefGoogle Scholar
Grim, R. E., Bray, R. H. & Bradley, W. F. (1937). Amer. Min. 22, 813.Google Scholar
Grim, R. E. (1939). J. Amer. Cer. Soc. 22, 141.CrossRefGoogle Scholar
Hendricks, S. B. & Alexander, L. T. (1939). Soil Sci. 48, 257.CrossRefGoogle Scholar
Kelley, W. P., Dore, W. H., Woodford, A. O. & Brown, S. M. (1939). Soil Sci. 48, 201.CrossRefGoogle Scholar
Larsen, E. S. & Wherry, E. T. (1917). J. Wash. Acad. Sci. 7, 213.Google Scholar
Nagelschmidt, G. (1938). Min. Mag. 25, 140.Google Scholar
Nagelschmdt, G. (1939). J. agric. Sci. 29, 477.CrossRefGoogle Scholar
Noll, W. (1936). Min. Petrogr. Mittlg., 48, 210.CrossRefGoogle Scholar
Parker, F. W. (1929). J. Amer. Soc. Agron. 21, 1030.CrossRefGoogle Scholar
Raychaudhuri, S. (1936). Thesis, University, London.Google Scholar
Robertson, I. M. & Shewan, J. M. (1935). J. Soc. Chem. Ind., Lond., 54, 35.Google Scholar
Ross, C. S. & Kerr, P. F. (1934). Prof. Pap. U.S. Oeol. Surv. 185, 9.Google Scholar
Toth (1939). Soil Sci. 48, 385.CrossRefGoogle Scholar
Truog, E., Taylor, J. R., Pearson, R. W., Weeks, M. E. & Simonson, R. W. (1937). Proc. Soil Sci. Soc. Amer. 1, 101.CrossRefGoogle Scholar