Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T05:12:25.941Z Has data issue: false hasContentIssue false

Mapping of quantitative trait loci underlying resistance to cassava anthracnose disease

Published online by Cambridge University Press:  12 November 2015

A. BOONCHANAWIWAT
Affiliation:
Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
S. SRAPHET
Affiliation:
Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
S. WHANKAEW
Affiliation:
Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
O. BOONSENG
Affiliation:
Rayong Field Crops Research Center, Ministry of Agriculture and Cooperatives, Rayong 21150, Thailand
D. R. SMITH
Affiliation:
Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
K. TRIWITAYAKORN*
Affiliation:
Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Cassava (Manihot esculenta Crantz) is an economically important root crop in Thailand, which is ranked the world's top cassava exporting country. Production of cassava can be hampered by several pathogens and pests. Cassava anthracnose disease (CAD) is an important disease caused by the fungus Colletotrichum gloeosporioides f. sp. manihotis. The pathogen causes severe stem damage resulting in yield reductions and lack of stem cuttings available for planting. Molecular studies of cassava response to CAD will provide useful information for cassava breeders to develop new varieties with resistance to the disease. The current study aimed to identify quantitative trait loci (QTL) and DNA markers associated with resistance to CAD. A total of 200 lines of two F1 mapping populations were generated by reciprocal crosses between the varieties Huabong60 and Hanatee. The F1 samples were genotyped based on simple sequence repeat (SSR) and expressed sequence tag-SSR markers and a genetic linkage map was constructed using the JoinMap®/version3·0 program. The results showed that the map consisted of 512 marker loci distributed on 24 linkage groups with a map length of 1771·9 centimorgan (cM) and a mean interval between markers of 5·7 cM. The genetic linkage map was integrated with phenotypic data for the response to CAD infection generated by a detached leaf assay test. A total of three QTL underlying the trait were identified on three linkage groups using the MapQTL®/version4·0 program. Those DNA markers linked to the QTL that showed high statistically significant values with the CAD resistance trait were identified for gene annotation analysis and 23 candidate resistance genes to CAD infection were identified.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akinbo, O., Gedil, M., Ekpo, E. J. A., Oladele, J. & Dixon, A. G. O. (2007). Detection of RAPD markers-linked to resistance to cassava anthracnose disease. African Journal of Biotechnology 6, 677682.Google Scholar
Anderson, S. B. (2013). Plant Breeding from Laboratories to Fields. Rijeka, Croatia: InTech.CrossRefGoogle Scholar
Balyejusa, K. E., Rönnberg-Wästljung, A. C., Egwang, T., Gullberg, U., Fregene, M. & Westerbergh, A. (2007). Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas 144, 129136.Google Scholar
Benbouza, H., Jacquemin, J. M., Baudoin, J. P. & Mergeai, G. (2006). Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnology, Agronomy, Society and Environment 10, 7781.Google Scholar
Boonchanawiwat, A., Sraphet, S., Boonseng, O., Lightfoot, D. A. & Triwitayakorn, K. (2011). QTL underlying plant and first branch height in cassava (Manihot esculenta Crantz). Field Crops Research 121, 343349.Google Scholar
Chen, X., Xia, Z., Fu, Y., Lu, C. & Wang, W. (2010). Constructing a genetic linkage map using an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Plant Molecular Biology Reporter 28, 676683.Google Scholar
Chen, X., Fu, Y., Xia, Z., Jie, L., Wang, H., Lu, C. & Wang, W. (2012). Analysis of QTL for yield-related traits in cassava using an F1 population from non-inbred parents. Euphytica 187, 227234.Google Scholar
Doyle, J. J. & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 1115.Google Scholar
FAO (2010). FAOSTAT Statistical Database. Rome, Italy: FAO.Google Scholar
Ferguson, M., Rabbi, I., Kim, D. J., Gedil, M., Lopez-Lavalle, L. A. B. & Okogbenin, E. (2012). Molecular markers and their application to cassava breeding: past, present and future. Tropical Plant Biology 5, 95109.Google Scholar
Gururani, M. A., Venkatesh, J., Upadhyaya, C. P., Nookaraju, A., Pandey, S. K. & Park, S. W. (2012). Plant disease resistance genes: current status and future directions. Physiological and Molecular Plant Pathology 78, 5165.CrossRefGoogle Scholar
Kishimoto, K., Kouzai, Y., Kaku, H., Shibuya, N., Minami, E. & Nishizawa, Y. (2011). Enhancement of MAMP signaling by chimeric receptors improves disease resistance in plants. Plant Signaling and Behaviour 6, 449451.Google Scholar
Kunkeaw, S., Worapong, J., Smith, D. R. & Triwitayakorn, K. (2010 a). An in vitro detached leaf assay for pre-screening resistance to anthracnose disease in cassava (Manihot esculenta Crantz). Australasian Plant Pathology 39, 547550.CrossRefGoogle Scholar
Kunkeaw, S., Tangphatsornruang, S., Smith, D. R. & Triwitayakorn, K. (2010 b). Genetic linkage map of cassava (Manihot esculenta Crantz) based on AFLP and SSR markers. Plant Breeding 129, 112115.CrossRefGoogle Scholar
Kunkeaw, S., Yoocha, T., Sraphet, S., Boonchanawiwat, A., Boonseng, O., Lightfoot, D. A., Triwitayakorn, K. & Tangphatsornruang, S. (2011). Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz). Molecular Breeding 27, 6775.CrossRefGoogle Scholar
Li, Y., Li, S., Bi, D., Cheng, Y. T., Li, X. & Zhang, Y. (2010). SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity. PLoS Pathogens 6. e1001111. doi: 10.1371/journal.ppat.1001111.CrossRefGoogle ScholarPubMed
Ma, H. X., Bai, G. H., Zhang, X. & Lu, W. Z. (2006). Main effects, epistasis, and environmental interactions of quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population. Phytopathology 96, 534541.CrossRefGoogle Scholar
Mba, R. E. C., Stephenson, P., Edwards, K., Melzer, S., Nkumbira, J., Gullberg, U., Apel, K., Gale, M., Tohme, J. & Fregene, M. (2001). Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theoretical and Applied Genetics 102, 2131.CrossRefGoogle Scholar
Okogbenin, E. & Fregene, M. (2002). Genetic analysis and QTL mapping of early root bulking in an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics 106, 5866.Google Scholar
Okogbenin, E. & Fregene, M. (2003). Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in Cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics 107, 14521462.Google Scholar
Okogbenin, E., Marin, J. & Fregene, M. (2006). An SSR-based molecular genetic map of cassava. Euphytica 147, 433440.Google Scholar
Okogbenin, E., Marin, J. & Fregene, M. (2008). QTL analysis for early yield in a pseudo F2 population of cassava. African Journal of Biotechnology 7, 131138.Google Scholar
Owolade, O. F., Dixon, A. G. O. & Adeoti, A. Y. A. (2006). Diallel analysis of cassava genotypes to anthracnose disease. World Journal of Agricultural Sciences 2, 98104.Google Scholar
Prochnik, S., Marri, P. R., Desany, B., Rabinowicz, P. D., Kodira, C., Mohiuddin, M., Rodriguez, F., Fauquet, C., Tohme, J., Harkins, T., Rokhsar, D. S. & Rounsley, S. (2012). The cassava genome: current progress, future directions. Tropical Plant Biology 5, 8894.Google Scholar
Romeis, T. (2001). Protein kinases in the plant defence response. Current Opinion in Plant Biology 4, 407414.Google Scholar
Sraphet, S., Boonchanawiwat, A., Thanyasiriwat, T., Boonseng, O., Tabata, S., Sasamoto, S., Shirasawa, K., Isobe, S., Lightfoot, D. A., Tangphatsornruang, S. & Triwitayakorn, K. (2011). SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics 122, 11611170.CrossRefGoogle ScholarPubMed
Stam, P. (1993). Construction of integrated genetic-linkage maps by means of a new computer package: Joinmap. Plant Journal 3, 739744.Google Scholar
Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W. J. & Hyde, K. D. (2008). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University Science B 9, 764778.Google Scholar
Thanyasiriwat, T., Sraphet, S., Whankaew, S., Boonseng, O., Bao, J., Lightfoot, D. A., Tangphatsornruang, S. & Triwitayakorn, K. (2014). Quantitative trait loci and candidate genes associated with starch pasting viscosity characteristics in cassava (Manihot esculenta Crantz). Plant Biology 16, 197207.Google Scholar
Thomas, G. J., Sweetingham, M. W., Yang, H. A. & Speijers, J. (2008). Effect of temperature on growth of Colletotrichum lupini and on anthracnose infection and resistance in lupins. Australasian Plant Pathology 37, 3539.Google Scholar
Van Ooijen, J. W., Boer, M. P., Jansen, R. C. & Maliepaard, C. (2000). MapQTL 4·0, Software for the Calculation of QTL Positions on Genetic Maps. Wageningen, The Netherlands: Plant Research International.Google Scholar
Van Ooijen, J. W. & Voorrips, R. E. (2002). JoinMap® version 3.0: Software for the Calculation of Genetic Linkage Maps. Wageningen, The Netherlands: Plant Research International.Google Scholar
Voorrips, R. E. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93, 7778.CrossRefGoogle ScholarPubMed
Whankaew, S., Poopear, S., Kanjanawattanawong, S., Tangphatsornruang, S., Boonseng, O., Lightfoot, D. A. & Triwitayakorn, K. (2011). A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BioMed Central Genomics 12, 266. doi: 10.1186/1471-2164-12-266.Google Scholar