Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-03T05:41:49.172Z Has data issue: false hasContentIssue false

Macronutrients released during the decomposition of pruning residues used as plant cover and their effect on soil fertility

Published online by Cambridge University Press:  18 July 2014

R. ORDÓÑEZ-FERNÁNDEZ
Affiliation:
Area of Ecological Production and Natural Resources, IFAPA, centre ‘Alameda del Obispo’, Avd. Menéndez Pidal s/n, Apdo. 3092, 14080 Córdoba, Spain
M. A. REPULLO-RUIBÉRRIZ DE TORRES*
Affiliation:
Area of Ecological Production and Natural Resources, IFAPA, centre ‘Alameda del Obispo’, Avd. Menéndez Pidal s/n, Apdo. 3092, 14080 Córdoba, Spain
J. ROMÁN-VÁZQUEZ
Affiliation:
Department of Rural Engineering, University of Cordoba, Leonardo da Vinci Hall, Rabanales Campus, N-IV, km 396, 14014, Córdoba, Spain
P. GONZÁLEZ-FERNÁNDEZ
Affiliation:
Area of Ecological Production and Natural Resources, IFAPA, centre ‘Alameda del Obispo’, Avd. Menéndez Pidal s/n, Apdo. 3092, 14080 Córdoba, Spain
R. CARBONELL-BOJOLLO
Affiliation:
Area of Ecological Production and Natural Resources, IFAPA, centre ‘Alameda del Obispo’, Avd. Menéndez Pidal s/n, Apdo. 3092, 14080 Córdoba, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The arrival on the market of various types of mulchers and chippers has boosted the use of pruning residues as plant cover among olive growers. In order to increase knowledge regarding the decomposition of these types of residues and their effect on soil fertility, an experiment was performed using different doses and sizes of pruning residues applied on the areas between the lines of olive trees in an organic olive grove.

Experiments were conducted over a period of two growing seasons (2009/10 and 2010/11). Treatments consisted of fine (⩽8 cm in diameter) and thick (>8 cm in diameter) pruning residues in the amounts indicated, I=2·65 kg/m2 fine; II=2·65 kg/m2 fine+1·12 kg/m2 thick; III=5·30 kg/m2 fine; IV=5·30 kg/m2 fine+2·24 kg/m2 thick; and a control without residues.

As regards the loss of biomass and nutrients during the decomposition of residues, two phases were observed. First, soluble compounds were degraded during a rapid initial phase, while in a second and slower phase, lignocellulosic compounds were decomposed. As a result, the pattern over time of nitrogen (N), phosphorus (P) and potassium (K) release fitted a double exponential model better, regardless of the treatment considered, registering in most cases determination coefficients close to one.

The favourable results observed in terms of augmentation in N, P and K soil content following the application of pruning residues confirmed a greater improvement in soil fertility than the soil covered by spontaneous weeds, which is the option most frequently adopted by organic olive growers. The initial amount of pruning residues has influenced the amount of soil nutrients. Considering the entirety of the soil profile (0–40 cm) and the content of these elements in the soil, treatment III, which contained the largest amount of fine residues, was the most efficient in terms of improving soil fertility, recording increases in the concentration of N, P and K of 1805·4, 53·1 and 598·7 kg/ha, respectively. The most unfavourable results were recorded by treatment I, with increases of 480·9 kg/ha in the case of N and a decrease in P content with regard to the control sample. Treatment II increased K (recording 215·2 kg/ha) which was the least in comparison to the control sample.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, V., Staver, C. & Milberg, P. (2001). Decomposition and nutrient release dynamics of weeds in shaded coffee. In Selective Weed and Ground Cover Management in a Coffee Plantation with Shade Trees in Nicaragua (Ed. Aguilar, V.), Appendix Paper III, pp. 122. Agraria 269. Uppsala, Sweden: Swedish University of Agricultural Sciences. Ph.D. Thesis in SLU.Google Scholar
Aguilar Bustamante, V. (2005). Análisis de datos provenientes de ensayos de descomposición y mineralización de residuos vegetales. La Calera 6, 5054.Google Scholar
Alvear, M., Astorga, M. & Reyes, F. (2008). Effects of vegetal residues from two sylvicultural treatments in Pinus radiata D. Don plantation on seasonal changes of the biological activities of soil. Revista de la Ciencia del Suelo y Nutrición Vegetal 8, 1427.Google Scholar
Arrigo, N. M., Jiménez, M. P., Palma, R. M., Benito, M. & Tortarolo, M. F. (2005). Residuos de poda compostados y sin compostar: uso potencial como enmienda orgánica del suelo. Ciencia del Suelo (Argentina) 23, 8792.Google Scholar
ASAE Standards (1998). Terminology for Soil-Engaging Components for Conservation: Tillage Planters, Drills and Seeds. ASAE S477. St. Joseph, MI, USA: ASAE.Google Scholar
Austin, A. T. & Vivanco, L. (2006). Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442, 555558.Google Scholar
Boniche, J., Alvarado, A., Molina, E. & Smyth, T. J. (2008). Release of carbon and nutrients after decomposition of harvest residues in heart-of-palm plantations (Bactris gasipaes) in Costa Rica. Agronomia Costarricense 32, 7386.Google Scholar
Bossa, J. R., Adams, J. F., Shannon, D. A. & Mullins, G. L. (2005). Phosphorus and potassium release pattern from leucaena leaves in three environments of Haiti. Nutrient Cycling in Agroecosystems 73, 2535.CrossRefGoogle Scholar
Brañas, J., González-Río, F. & Merino, A. (2000). Contenido de nutrientes en biomasa vegetal y suelos de plantaciones de Eucalyptus globulus en el norte de Galicia. Investigaciones Agrarias: Sistemas y Recursos Forestales 9, 317335.Google Scholar
Bunnell, F. L. & Tait, D. E. N. (1974). Mathematical simulation models of decomposition. In Soil Organisms and Decomposition in Tundra (Eds Holding, S. J., Heal, O. W., MacLean, S. F. & Flanagan, P. W.), pp. 207255. Stockholm, Sweden: Tundra Biome Steering Committee.Google Scholar
CAP (Consejería de Agricultura y Pesca. Junta de Andalucía) (2011). Estadísticas de la Producción Ecológica a 31/12/2010. Available from: http://www.juntadeandalucia.es/agriculturaypesca/portal/export/sites/default/comun/galerias/galeriaDescargas/cap/produccion-ecologica/informacion-operadores/E._ANDALUCIA_2010_definit6.pdf (accessed April 2014).Google Scholar
Carrera, A. L., Vargas, D. N., Campanella, M. V., Bertiller, M. B., Sain, C. L. & Mazzarino, M. J. (2005). Soil nitrogen in relation to quality and decomposability of plant litter in the Patagonian Monte, Argentina. Plant Ecology 181, 139151.Google Scholar
Castellanos-Barliza, J. & León Peláez, J. D. (2011). Descomposición de hojarasca y liberación de nutrientes en plantaciones de Acacia mangium (Mimosaceae) establecidas en suelos degradados de Colombia. Revista de Biología Tropical 59, 113128.Google Scholar
Cobo, J. G., Barrios, E., Kass, D. C. L. & Thomas, R. (2002). Nitrogen mineralization and crop uptake from surface-applied leaves of green manure species on a tropical volcanic-ash soil. Biology and Fertility of Soils 36, 8792.Google Scholar
Delgado, J. A. & Follett, R. F. (2002). Carbon and nutrient cycles. Journal of Soil and Water Conservation 57, 455464.Google Scholar
Domínguez-Vivancos, A. (1993). Fertirrigación. Madrid: Mundi-Prensa.Google Scholar
El-Hage Scialabba, N. & Hattam, C. (2002). Organic Agriculture, Environment and Food Security. Environment and Natural Resources Series no. 4. Rome: FAO.Google Scholar
European Commission (1992). Regulation 2078/1992/CEE, del consejo de 30 de junio de 1992, sobre métodos de producción agraria compatibles con las exigencias de la protección del medio ambiente y la conservación del espacio natural. Diaro Oficial de las Comunidades Europeas L215, 8590.Google Scholar
Gallo, M. E., Sinsabaugh, R. L. & Cabaniss, S. E. (2006). The role of ultraviolet radiation in litter decomposition in arid ecosystems. Applied Soil Ecology 34, 8291.Google Scholar
Isaac, L., Wood, C. W. & Shannon, D. A. (2000). Decomposition and nitrogen release of pruning from Leucaena species assessed for alley cropping. Agronomy Journal 92, 501511.Google Scholar
Jordan, C. F. (1985). Nutrient Cycling in Tropical Forest Ecosystems. Principles and their Application in Management and Conservation. New York: Wiley-Blackwell.Google Scholar
Khalid, H., Zin, Z. Z. & Anderson, J. M. (2000 a). Decomposition processes and nutrient release patterns of oil palm residues. Journal of Oil Palm Research 12 (1), 4663.Google Scholar
Khalid, H., Zin, Z. Z. & Anderson, J. M. (2000 b). Nutrient cycling in an oil palm plantation: the effects of residue management practices during replanting on dry matter and nutrient uptake of young palms. Journal of Oil Palm Research 12 (2), 2937.Google Scholar
Korsaeth, A. & Eltun, R. (2000). Nitrogen mass balances in conventional, integrated and ecological cropping systems and the relationship between balance calculations and nitrogen runoff in an 8-year field experiment in Norway. Agriculture, Ecosystems and Environment 79, 199214.Google Scholar
Lim, K. C. & Zaharah, A. R. (2000). Decomposition and N–K release by oil palm empty fruit bunches applied under mature palms. Journal of Oil Palm Research 12 (2), 5562.Google Scholar
Martínez-Yrízar, A., Núñez, S. & Búrquez, A. (2007). Leaf litter decomposition in a southern Sonoran Desert ecosystem, Northwestern Mexico: effects of habitat and litter quality. Acta Oecologica 32, 291300.Google Scholar
Mendonça, E. S. & Stott, D. E. (2003). Characteristics and decomposition rates of pruning residues from a shaded coffee system in Southeastern Brazil. Agroforestry Systems 57, 117125.Google Scholar
Merino, A., Rey, C., Brañas, J. & Rodríguez-Soalleiro, R. (2003). Biomasa arbórea y acumulación de nutrientes en plantaciones de Pinus radiata D. Don en Galicia. Investigaciones Agraria: Sistemas y Recursos Forestales 12, 8598.Google Scholar
Ngoran, A., Zakra, N., Ballo, K., Kouamé, C., Zapata, F., Hofman, G. & Van Cleemput, O. (2006). Litter decomposition of Acacia auriculiformis Cunn. Ex Benth. and Acacia mangium Willd. under coconut trees on quaternary sandy soils in Ivory Coast. Biology and Fertility of Soils 43, 102106.Google Scholar
Olson, J. S. (1963). Energy storage and balance of producers and decomposer in ecological systems. Ecology 44, 322331.Google Scholar
Ordóñez, R., Ramos, F. J., González, P., Pastor, M. & Giráldez, J. V. (2001). Influencia de la aplicación continuada de restos de poda de olivo sobre las propiedades físico-químicas de un suelo de olivar. In Temas de Investigación en Zona no Saturada (Eds López-Rodríguez, J. J. & Quemada, M.), ZNS Vol.5, pp. 165169. Pamplona, Spain: Universidad Pública de Navarra.Google Scholar
Ordóñez, R., González, P. & Pastor, M. (2007). Cubiertas inertes: los restos de poda como protección y mejora de las propiedades del suelo. In Cubiertas Vegetales en Olivar (Ed. de Andalucía, Junta), pp. 159168. Seville, Spain: Consejeria de Agricultura y Pesca.Google Scholar
Ordóñez, R., Carbonell, R., Repullo, M., González, P. & Rodríguez-Lizana, A. (2009). Nutrients released in the residue decomposition in different types of plant covers in the olive grove. In Proceedings 18th Symposium of the International Scientific Centre of Fertilizers. More Sustainability in Agriculture: New Fertilizers and Fertilization Management (Eds Sequi, P., Ferri, D., Rea, E., Montemurro, F., Vonella, A. V. & Fornaro, F.), pp. 101108. Rome: Agricultural Research Council.Google Scholar
Ouro, G., Pérez Batallón, P. & Merino, A. (2001). Effects of sylvicultural practices on nutrient status in a Pinus radiata plantation: nutrient export by tree removal and nutrient dynamics in decomposing logging residues. Annals of Forest Science 58, 411422.Google Scholar
Pastor Muñoz-Cobo, M., Hidalgo Moya, J. C., Nieto Carriconda, J. & Vega Macías, V. (2006). La fertilización en el olivar de riego. In Cultivo del Olivo con Riego Localizado (Ed. Pastor Muñoz-Cobo, M.), pp. 505546. Madrid, Spain: Mundi-Prensa.Google Scholar
Prause, J. & Fernández-López, C. (2000). Litter decomposition and lignin/cellulose and lignin/total nitrogen rates of leaves in four species of the Argentine Subtropical forest. Agrochimica 39, 3145.Google Scholar
Prescott, C. E. (2005). Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management 220, 6674.Google Scholar
Rembialkowska, E. (2004). The impact of organic agriculture on food quality. Agricultura 3, 1926.Google Scholar
Repullo, M. A., Carbonell, R., Hidalgo, J., Rodríguez-Lizana, A. & Ordóñez, R. (2012). Using olive pruning residues to cover soil and improve fertility. Soil and Tillage Research 124, 3646.Google Scholar
Rodríguez-Lizana, A., Carbonell, R., González, P. & Ordóñez, R. (2010). N, P and K released by the field decomposition of residues of a pea–wheat–sunflower rotation. Nutrient Cycling in Agroecosystems 87, 199208.Google Scholar
Rosati, A. & Aumaitre, A. (2004). Organic dairy farming in Europe. Livestock Production Science 90, 4151.Google Scholar
Rovira, P. & Vallejo, V. R. (1997). Organic carbon and nitrogen mineralization under Mediterranean climatic conditions: the effects of incubation depth. Soil Biology and Biochemistry 29, 15091520.Google Scholar
Salisbury, F. & Ross, C. (1992). Plant Physiology. Belmont, California, USA: Wadsworth Publishing Company.Google Scholar
Sariyildiz, T. & Anderson, J. M. (2003). Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biology and Biochemistry 35, 391399.CrossRefGoogle Scholar
Schlesinger, W. H. (2000). Biogeoquímica: un Análisis Global. Barcelona, Spain: Ariel Ciencia.Google Scholar
Schomberg, H. H. & Steiner, J. L. (1999). Nutrient dynamic of crop residues decomposition on a fallow no-till soil surface. Soil Science Society of America Journal 63, 607613.Google Scholar
Semmartin, M. (2006). Dinámica de la descomposición y la mineralización neta del nitrógeno y del fósforo de heces de vacunos en pastoreo sobre un pastizal templado. Revista Argentina de Producción Animal 26, 193202.Google Scholar
Soil Survey Staff (1998). Keys to Soil Taxonomy, 8th edn. Washington, DC: USDA, NRCS.Google Scholar
Soil Survey Staff (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd edn. USDA Agricultural Handbook 436. Washington, DC: USDA.Google Scholar
Soria, L., Fernández, E., Menjívar, J. C., Pastor, M. & Aguilar, J. (2000). Análisis estadísticos de los niveles de K asimilable en suelos carbonatados de olivar de la comarca de La Loma (Jaén). Edafología 7, 187196.Google Scholar
Soto, G., Luna, P., Wagger, M., Smyth, T. J. & Alvarado, A. (2002). Descomposición de residuos de cosecha y liberación de nutrimentos en plantaciones de palmito en Costa Rica. Agronomía Costarricense 26, 4351.Google Scholar
Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. M., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. I. & Sumner, M. E. (1996). Methods of Soil Analysis, Part 3: Chemical Methods. Madison, WI, USA: Soil Science Society of America & American Society of Agronomy.Google Scholar
Tian, G., Kang, B. T. & Brussaard, L. (1992). Biological effect of plant residues with contrasting chemical compositions under humid tropical conditions-decomposition and nutrient release. Soil Biology and Biochemistry 24, 10511060.Google Scholar
Tombesi, A., Guelfi, P. & Nottiani, G. (2002). Tecniche per lo sviluppo dell'olivicoltura in Umbria. Perugia, Italy: Agencia Regionale Umbra per lo Sviluppo e l'Innovazione in Agricoltura. Dipartamento di Arboricoltura e Propagazione delle Piante Universitá degli Studi di Perugia.Google Scholar
Weerakkody, J. & Parkinson, D. (2006). Input, accumulation and turnover of organic matter, nitrogen and phosphorus in surface organic layers of an upper montane rainforest in Sri Lanka. Pedobiologia 50, 377383.Google Scholar
Wells, A. T., Chan, K. Y. & Cornish, P. S. (2000). Comparison of conventional and alternative vegetable farming systems on the properties of a yellow earth in New South Wales. Agriculture, Ecosystems and Environment 80, 4760.Google Scholar
Wilson, D. O. & Hargrove, W. L. (1986). Release of nitrogen from crimson clover residue under two tillage systems. Soil Science Society of America Journal 50, 12511254.Google Scholar
Youkhana, A. & Idol, T. (2009). Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawai. Soil Biology and Biochemistry 41, 25272534.Google Scholar
Zaharah, A. R. & Bah, A. R. (1999). Patterns of decomposition and nutrient release by fresh Gliricidia (Gliricidia sepium) leaves in an ultisol. Nutrient Cycling in Agroecosystems 55, 269277.Google Scholar
Zas, R. & Serrada, R. (2003). Foliar nutrient status and nutritional relationships of young Pinus radiata D. Don plantationsin northwest Spain. Forest Ecology and Management 174, 167176.Google Scholar