Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T01:20:13.667Z Has data issue: false hasContentIssue false

Iron and zinc concentrations in peanut (Arachis hypogaea L.) seeds and their relationship with other nutritional and yield parameters

Published online by Cambridge University Press:  27 June 2014

PASUPULETI JANILA*
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
S. N. NIGAM
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
R. ABHISHEK
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
V. ANIL KUMAR
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
S. S. MANOHAR
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
R. VENUPRASAD
Affiliation:
Africa Rice Center (AfricaRice), Ibadan, Nigeria
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Biofortification (delivery of micronutrients via micronutrient-dense crops) can be achieved through plant breeding and offers a cost-effective and sustainable approach to fighting micronutrient malnutrition. The present study was conducted to facilitate the initiation of a breeding programme to improve the concentration of iron (Fe) and zinc (Zn) in peanut (Arachis hypogaea L.) seeds. The experiment was conducted with 64 diverse peanut genotypes for 2 years in eight different environments at the International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India to assess the genetic variation for Fe and Zn concentrations in peanut seeds and their heritability and correlations with other traits. Significant differences were observed among the genotypes and environments for Fe (33–68 mg/kg), Zn (44–95 mg/kg), protein (150–310 mg/g) and oil (410–610 mg/g) concentration in seeds and their heritability was high, thus indicating the possibility of improving them through breeding. As seen in other plants, a significant positive association between concentrations of Fe and Zn was observed. Trade-offs between pod yield and Fe and Zn concentrations were not observed and the same was also true for oil content. Besides being high yielding, genotypes ICGV 06099 (57 mg/kg Fe and 81 mg/kg Zn) and ICGV 06040 (56 mg/kg Fe and 80 mg/kg Zn) had stable performance for Fe and Zn concentrations across environments. These are the ideal choices for use as parents in a breeding programme and in developing mapping populations.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amarakoon, D., Thavarajah, D., McPhee, K. & Thavarajah, P. (2012). Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: a potential food-based solution to global micronutrient malnutrition. Journal of Food Composition and Analysis 27, 813.CrossRefGoogle Scholar
Ashok Kumar, A., Reddy, B. V. S., Ramaiah, B., Reddy, P. S., Sahrawat, K. L. & Upadhyaya, H. D. (2009). Genetic variability and plant character association of grain Fe and Zn in selected core collection accessions of sorghum germplasm and breeding lines. Journal of SAT Agricultural Research 7, 14.Google Scholar
Asibuo, J. Y., Akromah, R., Safo-Kantanka, O., Adu-Dapaah, H. K., Ohemeng-Dapaah, S. & Agyeman, A. (2008). Chemical composition of groundnut, Arachis hypogaea (L) landraces. African Journal of Biotechnology 7, 22032208.Google Scholar
Beebe, S., Gonzalez, A. V. & Rengifo, J. (2000). Research on trace minerals in the common bean. Food and Nutrition Bulletin 21, 387391.CrossRefGoogle Scholar
Blair, M. W., Astudillo, C., Grusak, M. A., Graham, R. & Beebe, S. E. (2009). Inheritance of seed iron and zinc concentration in common bean (Phaseolus vulgaris L.). Molecular Breeding 23, 197207.CrossRefGoogle Scholar
Bouis, H. (1996). Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition Reviews 54, 131137.CrossRefGoogle ScholarPubMed
Cichy, K. A., Forster, S., Grafton, K. F. & Hosfield, G. L. (2005). Inheritance of seed zinc accumulation in navy bean. Crop Science 45, 864870.CrossRefGoogle Scholar
Crossa, J. & Cornelius, P. L. (1997). Sites regression and shifted multiplicative model clustering of cultivar trial sites under heterogeneity of error variances. Crop Science 37, 406415.CrossRefGoogle Scholar
Engle-Stone, R., Yeung, A., Welch, R. & Glahn, R. P. (2005). Meat and ascorbic acid can promote Fe availability from Fe–phytate but not from Fe–tannic acid complexes. Journal of Agricultural and Food Chemistry 53, 1027610284.CrossRefGoogle Scholar
FAO (2011). FAOSTAT. Rome: FAO. Available from: http://faostat.fao.org (accessed 2 February 2013).Google Scholar
Fehr, W. R. (1991). Principles of Cultivar Development: Theory and Technique. New York, NY: Macmillan.Google Scholar
Fidler, M. C., Davidsson, L., Zeder, C. & Hurrell, R. F. (2004). Erythorbic acid is a potent enhancer of nonheme-iron absorption. American Journal of Clinical Nutrition 79, 99102.CrossRefGoogle ScholarPubMed
Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika 58, 453467.CrossRefGoogle Scholar
Gibson, R. S. (1994). Content and bioaccessibility of trace elements in vegetarian diets. American Journal of Clinical Nutrition 59 (Suppl.), 1223S1232S.CrossRefGoogle Scholar
Gregorio, G. B. (2002). Progress in breeding for trace minerals in staple crops. Journal of Nutrition 132, 500S502S.CrossRefGoogle ScholarPubMed
Grusak, M. A. & DellaPenna, D. (1999). Improving the nutrient composition of plants to enhance human nutrition and health. Annual Review of Plant Physiology and Plant Molecular Biology 50, 133161.CrossRefGoogle Scholar
Guzmán-Maldonado, S. H., Martínez, O., Acosta-Gallegos, J. A., Guevara-Lara, F. & Paredes-Lopez, O. (2003). Putative quantitative trait loci for physical and chemical components of common bean. Crop Science 43, 10291035.CrossRefGoogle Scholar
Hemalatha, S., Platel, K. & Srinivasan, K. (2007). Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. European Journal of Clinical Nutrition 61, 342348.CrossRefGoogle ScholarPubMed
House, W. A., Welch, R. M., Beebe, S. & Cheng, Z. (2002). Potential for increasing the amounts of bioavailable zinc in dry beans through plant breeding. Journal of the Science of Food and Agriculture 82, 14521457.CrossRefGoogle Scholar
Jambunathan, R. (1991). Groundnut quality characteristics. In Uses of Tropical Grain Legumes: Proceedings of a Consultants Meeting; 27–30 Mar 1989 (Eds Jambunathan, R., Hall, S. D., Sudhir, P., Rajan, V. & Sadhana, V.), pp. 267275. Patancheru, India: ICRISAT.Google Scholar
Jambunathan, R., Raju, S. M. & Barde, S. P. (1985). Analysis of oil content of groundnuts by nuclear magnetic resonance spectrometry. Journal of the Science of Food and Agriculture 36, 162166.CrossRefGoogle Scholar
Joshi, A. K., Crossa, J., Arun, B., Chand, R., Trethowan, R., Vargas, M. & Ortiz-Monasterio, I. (2010). Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Research 116, 268277.CrossRefGoogle Scholar
Klein, M. A. & Grusak, M. A. (2009). Identification of nutrient and physical seed trait QTLs in the model legume, Lotus japonicus. Genome 52, 677691.CrossRefGoogle Scholar
Krapovickas, A. & Gregory, W. C. (1994). TaxonomIa del genero Arachis (Leguminosae). Bonplandia 8, 1186.CrossRefGoogle Scholar
Kroonenberg, P. M. (1995). Introduction to Biplots for G×E Tables. Report 51, Department of Mathematics Research, University of Queensland, Brisbane, Australia. Available from: http://three-mode.leidenuniv.nl/document/biplot.pdf (accessed 30 October 2013).Google Scholar
Lal, C. & Singh, A. L. (2007). Screening for high zinc density groundnut genotypes in India. In Zinc Crops 2007: Improving Crop Production and Human Health. Proceedings of a conference held 24–26 May 2007, Istanbul, Turkey. Tervueren, Belgium: International Zinc Association. Available from: http://zinc-crops.ionainteractive.com/ZnCrops2007/PDF/2007_zinccrops2007_lal_abstract.pdf (accessed May 2014).Google Scholar
Lu, K., Li, L., Zheng, X., Zhang, Z., Mou, T. & Hu, Z. (2008). Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. Journal of Genetics 87, 305310.CrossRefGoogle ScholarPubMed
Mayer, J. E., Pfeiffer, W. H. & Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology 11, 166170.CrossRefGoogle ScholarPubMed
Maziya-Dixon, B., Kling, J. G., Menkir, A. & Dixon, A. (2000). Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food and Nutrition Bulletin 21, 419422.CrossRefGoogle Scholar
Morgounov, A., Gómez-Becerra, H. F., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Munimjanov, H., Zelenskiy, Y., Ozturk, L. & Cakmak, I. (2007). Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155, 193203.CrossRefGoogle Scholar
Muhr, C. R., Datta, N. P., Sankaran Bramony, H., Leley, V. R. & Donahue, R. L. (1965). Soil Testing in India. New Delhi: USAID.Google Scholar
Ortiz-Monasterio, J. I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R. & Pena, R. J. (2007). Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science 46, 293307.CrossRefGoogle Scholar
Parsad, R., Crossa, J., Vargas, M. & Bhatia, V. K. (2007). Biplot graphic display: some concepts. In Electronic Book on Advances in Data Analytical Techniques (Eds Parsad, R., Gupta, V. K., Bhar, L. M. & Bhatia, V. K.), Module VI, section 6.3. New Delhi: ICAR. Available from: http://www.iasri.res.in/design/ebook/EBADAT/index.htm (accessed May 2014).Google Scholar
Peleg, Z., Saranga, Y., Yazici, A., Fahima, T., Ozturk, L. & Cakmak, I. (2008). Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil 306, 5767.CrossRefGoogle Scholar
Raboy, V., Dickinson, D. B. & Below, F. E. (1984). Variation in seed total phosphorus, phytic acid, zinc, calcium, magnesium, and protein among lines of Glycine max and G. soja. Crop Science 24, 431434.CrossRefGoogle Scholar
Reddy, P. S., Reddy, B. V. S., Ashok Kumar, A., Ramesh, S., Sahrawat, K. L. & Venkateswara Rao, P. (2010). Association of grain Fe and Zn contents with agronomic traits in sorghum. Indian Journal of Plant Genetic Resources 23, 280284.Google Scholar
Sahrawat, K. L., Ravi Kumar, G. & Rao, J. K. (2002). Evaluation of triacid and dry ashing procedures for determining potassium, calcium, magnesium, iron, zinc, manganese, and copper in plant materials. Communications in Soil Science and Plant Analysis 33, 95102.CrossRefGoogle Scholar
Sandberg, A. S. (2002). Bioaccessibility of minerals in legumes. British Journal of Nutrition 88 (Suppl. S3), S281S285.CrossRefGoogle Scholar
Sarla, N., Mallikarjuna Swamy, B. P., Kaladhar, K., Anuradha, K., Venkateshwar Rao, Y., Batchu, A. K., Agarwal, S., Babu, A. P., Sudhakar, T., Sreenu, K., Longvah, T., Surekha, K., Rao, K. V., Reddy, G. A., Roja, T. V., Kiranmayi, S. L., Radhika, K., Manorama, K., Cheralu, C. & Viraktamath, B. C. (2012). Increasing iron and zinc in rice grains using deep water rices and wild species – identifying genomic segments and candidate genes. Quality Assurance and Safety of Crops and Foods 4 (Spl. Issue), 138.Google Scholar
Sas Institute (2008). SAS/STAT 9.2 User's Guide. Cary, NC, USA: SAS Institute Inc.Google Scholar
Singh, A. L., Chaudhari, V. & Misra, J. B. (2011). Zinc fortification in groundnut and identification of Zn responsive cultivars of India. In Zinc Crops 2011 – Plant Breeding and Molecular Biology. Proceedings of the 3rd International Zinc Symposium, Hyderabad, India, 10–14 Oct 2011. Tervueren, Belgium: International Zinc Association. Available from: http://www.zinccrops2011.org/presentations/2011_zinccrops2011_al_singh_2_abstract.pdf (accessed April 2014).Google Scholar
Singh, U. & Jambunathan, R. (1980). Evaluation of rapid methods for the estimation of protein in chickpea (Cicer arietinum L.). Journal of the Science of Food and Agriculture 31, 247254.CrossRefGoogle Scholar
Thavarajah, D. & Thavarajah, P. (2012). Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: biofortification opportunities to combat global micronutrient malnutrition. Food Research International 49, 99104.CrossRefGoogle Scholar
Thavarajah, D., Thavarajah, P., See, C. T. & Vandenberg, A. (2010). Phytic acid and Fe and Zn concentration in lentil (Lens culinaris L.) seeds is influenced by temperature during seed filling period. Food Chemistry 122, 254259.CrossRefGoogle Scholar
Upadhyaya, H. D., Dronavalli, N., Singh, S. & Dwivedi, S. L. (2012 a). Variability and stability for kernel iron and zinc contents in the ICRISAT mini core collection of peanut. Crop Science 52, 26282637.CrossRefGoogle Scholar
Upadhyaya, H. D., Mukri, G., Nadaf, H. L. & Singh, S. (2012 b). Variability and stability analysis for nutritional traits in the mini core collection of peanut. Crop Science 52, 168178.CrossRefGoogle Scholar
Velu, G., Rai, K. N., Muralidharan, V., Longvah, T. & Crossa, J. (2011). Gene effects and heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R. Br). Euphytica 180, 251259.CrossRefGoogle Scholar
WHO (2002). The World health Report 2002: Reducing Risks, Promoting Healthy Life. Geneva: World Health Organization. Available from: http://www.who.int/whr/2002/en/ (accessed April 2014).Google Scholar
Yan, W. (2002). Singular-value partitioning in biplot analysis of multienvironment trial data. Agronomy Journal 94, 990996.Google Scholar
Yan, W. & Kang, M. S. (2003). GGE Biplot Analysis: a Graphical Tool for Breeders, Geneticists and Agronomists. Boca Raton, FL, USA: CRC Press.Google Scholar
Yan, W. & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Canadian Journal of Plant Science 86, 623645.CrossRefGoogle Scholar
Yan, W., Hunt, L. A., Sheng, Q. & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science 40, 597605.CrossRefGoogle Scholar