Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T04:41:32.043Z Has data issue: false hasContentIssue false

Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe

Published online by Cambridge University Press:  28 February 2012

S. THALER*
Affiliation:
Institute of Meteorology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
J. EITZINGER
Affiliation:
Institute of Meteorology, University of Natural Resources and Applied Life Sciences, Vienna, Austria CzechGlobe – Center for Global Climate Change Impacts Studies, Poříčí 3b 603 00, Brno, Czech Republic
M. TRNKA
Affiliation:
CzechGlobe – Center for Global Climate Change Impacts Studies, Poříčí 3b 603 00, Brno, Czech Republic Institute of Agrosystems and Bioclimatology, Mendel UniversityBrno, Czech Republic
M. DUBROVSKY
Affiliation:
Institute of Agrosystems and Bioclimatology, Mendel UniversityBrno, Czech Republic Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The main objective of the present crop simulation study was to determine the impact of climate change on the winter wheat production of a dry area situated in north-east Austria (Marchfeld region) based on the CERES-Wheat crop-growth simulation model associated with global circulation models (GCMs). The effects of some of the feasible regional- and farm-based adaptation measures (management options) on crop yield and water and nitrogen (N) balance under the climate scenarios were simulated. Climate scenarios were defined based on the ECHAM5, HadCM3 and NCAR PCM GCM simulations for future conditions (2021–50) as described in the Special Report on Emission Scenarios A1B (Nakicenovic & Swart 2000). The potential development, yield, water demand and soil N leaching were estimated for winter wheat and all of the defined climates (including rising CO2 levels) and management scenarios (soil cultivation, windbreaks and irrigation).

The results showed that a warming of 2°C in the air temperature would shorten the crop-growing period by up to 20 days and would decrease the potential winter wheat yield on nearly all of the soil types in the region. Particularly, high-yield reductions were projected for light-textured soils such as Parachernozems. A change from ploughing to minimum tillage within the future scenario would lead to an increase of up to 8% of the mean yield of winter wheat. This effect mainly resulted from improved water supply to the crop, associated with higher soil water storage capacity and decrease of unproductive water losses. Hedgerows, which reduce the wind speed, were predicted to have particularly positive effects on medium and moderately fine-textured soils such as Chernozems and Fluvisols. With both management changes, regional mean-yield level can be expected to be +4% in comparison with no management changes in the future conditions. Compared with the baseline period, water demand for the potential yield of winter wheat would require 6–37 mm more water per crop season (area-weighted average). The highest water demand would be on medium-textured soils, which make up the largest amount of area in the study region. Additionally, the effects of snow accumulation near hedgerows would further increase the yield, but would also lead to higher N leaching rates. However, specific management options, such as minimum tillage and hedgerows, could contribute towards reducing the increasing water demand.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrov, V. A., Eitzinger, J., Cajic, V. & Oberforster, M. (2002). Potential impact of climate change on selected agricultural crops in north-eastern Austria. Global Change Biology 8, 372389.CrossRefGoogle Scholar
Alexandrov, V. A. & Hoogenboom, G. (2000). The impact of climate variability and change on crop yield in Bulgaria. Agricultural and Forest Meteorology 104, 315327.CrossRefGoogle Scholar
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome, Italy: FAO.Google Scholar
Amthor, J. S. (2001). Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Research 73, 134.CrossRefGoogle Scholar
Brenner, A. J. (1996). Microclimate modifications in agroforestry. In Tree-Crop Interactions (Eds Ong, C. K. & Huxley, P.), pp. 159187. Oxon, UK: CAB International.Google Scholar
Brenner, A. J., Jarvis, P. G. & Van Den Beldt, R. (1995). Windbreak–crop interactions in the Sahel. 2. Crop response of millet in shelter. Agricultural and Forest Meteorology 75, 235262.CrossRefGoogle Scholar
BFW – Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (2007). Digitale Bodenkarte von Österreich. Vienna: BFW.Google Scholar
Challinor, A. (2011). Forecasting food. Nature Climate Change 1, 103104.CrossRefGoogle Scholar
Chen, C. C. & McCARL, B. A. (2001). An investigation of the relationship between pesticide usage and climate change. Climatic Change 50, 475487.CrossRefGoogle Scholar
Cepuder, P. (1999). Zur Nitratproblematik in Ostösterreich, dem Tullner Feld, dem Marchfeld und dem nördlichen Burgenland. In BAL – Bericht Nr. 8 (Ed. Bundesanstalt für Alpenländische Landwirtschaft), pp. 14. Gumpenstein, Austria: Eigenverlag.Google Scholar
Cepuder, P. & Schlederer, W. (2002). Untersuchung der Grundwasserbelastung mit Nitrat unter Feldgemüsebau im pannonischen Klimaraum. Endbericht. Vienna: Bundesministeriums für Land- und Forstwirtschaft.Google Scholar
Cleugh, H. A., Miller, J. & Bohm, M. (1998). Direct mechanical effects of wind on crops. Agroforestry Systems 41, 85112.CrossRefGoogle Scholar
Curry, R. B., Peart, R. M., Jones, J. W., Boote, K. J. & Allen, L. H. (1990). Simulation as a tool for analyzing crop response to climate change. Transactions of the American Society of Agricultural Engineers 33, 981990.CrossRefGoogle Scholar
Davies, W. J., Zhang, J., Yang, J. & Dodd, I. C. (2011). Novel crop science to improve yield and resource use efficiency in water-limited agriculture. Journal of Agricultural Science, Cambridge 149 (Suppl. 1), 123131.CrossRefGoogle Scholar
Dubrovsky, M. (1997). Creating daily weather series with use of the weather generator. Environmetrics 8, 409424.3.0.CO;2-0>CrossRefGoogle Scholar
Dubrovsky, M., Zalud, Z. & Stastna, M. (2000). Sensitivity of CERES-Maize yields to statistical structure of daily weather series. Climatic Change 46, 447472.CrossRefGoogle Scholar
Dubrovsky, M., Buchtele, J. & Zalud, Z. (2004). High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling. Climatic Change 63, 145179.CrossRefGoogle Scholar
Dubrovsky, M., Nemesova, I. & Kalvova, J. (2005). Uncertainties in climate change scenarios for the Czech Republic. Climate Research 29, 139156.CrossRefGoogle Scholar
Dubrovsky, M., Svoboda, M. D., Trnka, M., Hayes, M. J., Wilhite, D. A., Zalud, Z. & Hlavinka, P. (2008). Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology 96, 155171.CrossRefGoogle Scholar
Eitzinger, J., Formayer, H., Thaler, S., Trnka, M., Zdenek, Z. & Alexandrov, V. (2008). Results and uncertainties of climate change impact research in agricultural crop production in Central Europe. Die Bodenkultur 59, 131147.Google Scholar
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.CrossRefGoogle Scholar
Eitzinger, J., Stastná, M., Zalud, Z. & Dubrovsky, M. (2003). A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agricultural Water Management 61, 195217.CrossRefGoogle Scholar
Falloon, P. & Betts, R. (2010). Climate impacts on European agriculture and water management in the context of adaptation and mitigation – the importance of an integrated approach. Science of the Total Environment 408, 56675687.CrossRefGoogle ScholarPubMed
Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone and global climate change. Agriculture, Ecosystems and Environment 97, 120.CrossRefGoogle Scholar
Gerersdorfer, T., Eitzinger, J. & Rischbeck, P. (2009). Simulation of crop yield near hedgerows under aspects of a changing climate – an Austrian attempt. In Climate Variability, Modeling Tools and Agricultural Decision-Making (Ed. Utset, A.), pp. 321330. Hauppauge, NY: Nova Science Publishers.Google Scholar
Ghaffari, A., Cook, H. F. & Lee, H. C. (2002). Climate change and winter wheat management: a modelling scenario for south-eastern England. Climatic Change 55, 509533.CrossRefGoogle Scholar
Godwin, D. C. & Jones, C. A. (1991). Nitrogen dynamics in soil-plant systems. In Modeling Plant and Soil Systems. Agronomy Monograph No. 31 (Eds Hanks, J. & Ritchie, J. T.), pp. 287321. Madison, WI: ASA, CSSA & SSSA.Google Scholar
Godwin, D. C. & Singh, U. (1998). Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems. In Understanding Options for Agricultural Production. System Approaches for Sustainable Agricultural Development (Eds Tsuji, G. Y., Hoogenboom, G. & Thornton, P. K.), pp. 5577. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Hall, A. E. (2001). Crop Responses to Environment. Boca Raton, FL: CRC Press LLC.Google Scholar
Harvey, L. D. D., Gregory, J., Hoffert, M., Jain, A., Lal, M., Leemans, R., Raper, S. B. C., Wigley, T. M. L. & De Wolde, J. (1997). An Introduction to Simple Climate Models used in the IPCC Second Assessment Report. IPCC Technical Paper 2 (Eds Houghton, J. T., Meira Filho, L. G., Griggs, D. J. & Noguer, M.). Geneva, Switzerland: IPCC.Google Scholar
Hathfield, J. L. (1979). Canopy temperatures: the usefulness and reliability of remote measurements. Agronomy Journal 71, 889892.CrossRefGoogle Scholar
Hlavinka, P., Eitzinger, J., Smutny, V., Thaler, S., Zhalud, Z., Rischbeck, P. & Kren, J. (2010). The performance of CERES-Barley and CERES-Wheat under various soil conditions and tillage practices in Central Europe. Bodenkultur 61, 921.Google Scholar
Hulme, M., Wigley, T. M. L., Barrow, E. M., Raper, S. C. B., Centella, A., Smith, S. & Chipanshi, A. C. (2000). Using a Climate Scenario Generator for Vulnerability and Adaptation Assessments: Magicc and SCENGEN Version 2.4 Workbook. Norwich, UK: Climatic Research Unit.Google Scholar
Hunt, L. A., Pararajasingham, S., Jones, J. W., Hoogenboom, G., Imamura, D. T. & Ogoshi, R. M. (1993). Gencalc: software to facilitate the use of crop models for analyzing field experiments. Agronomy Journal 85, 10901094.Google Scholar
Hunt, L. A., White, J. W. & Hoogenboom, G. (2001). Agronomic data: advances in documentation and protocols for exchange and use. Agricultural Systems 70, 477492.CrossRefGoogle Scholar
Iqbal, M. A., Eitzinger, J., Formayer, H., Hassan, A. & Heng, L. K. (2011). A simulation study for assessing yield optimization and potential for water reduction for summer-sown maize under different climate change scenarios. Journal of Agricultural Science, Cambridge 149, 129143.Google Scholar
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J. & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy 18, 235265.CrossRefGoogle Scholar
Jones, J. W., Keating, B. A. & Porter, C. H. (2001). Approaches to modular model development. Agricultural Systems 70, 421443.CrossRefGoogle Scholar
Kartschall, T., Grossman, S., Pinter, P. J., Garcia, R. L., Kimball, B. A., Wall, G. W., Hunsaker, D. J. & Lamorte, R. L. (1995). A simulation of phenology, growth, carbon dioxide exchange and yields under ambient atmosphere and free-air carbon dioxide enrichment (FACE) Maricopa, Arizona, for wheat. Journal of Biogeography 22, 611622.CrossRefGoogle Scholar
Kaukoranta, T. & Hakala, K. (2008). Impact of spring warming on sowing times of cereal, potato and sugar beet in Finland. Agricultural and Food Science 17, 165176.CrossRefGoogle Scholar
Kersebaum, K. C., Nendel, C., Mirschel, W., Manderscheid, R., Weigel, H.-J. & Wenkel, K.-O. (2008). Testing different CO2 response algorithms against a FACE crop rotation experiment and application for climate change impact assessment on different sites in Germany. In Symposium on Climate Change and Variability – Agro-meteorological Monitoring and Coping Strategies for Agriculture, 3–6 June 2008, Oscarsborg, Norway. Book of Abstracts (Eds Sivertsen, T. H., Skjelvåg, A. O., Orlandini, S., Sivakumar, M. V. K., Eitzinger, J., Nejedlik, P., Alexandrov, V., Toulios, L., Calanca, P., Stefanski, R., Motha, R., Gamedze, M., Trnka, M., Smith, W. & Netland, J.), p. 30. Ås, Norway: Bioforsk.Google Scholar
Klik, A. & Eitzinger, J. (2010). Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. Journal of Agricultural Science, Cambridge 148, 529541.CrossRefGoogle Scholar
KovácS, G. J., Németh, T. & Ritchie, J. T. (1995). Testing simulation models for the assessment of crop production and nitrate leaching in Hungary. Agricultural Systems 49, 385397.CrossRefGoogle Scholar
Kristensen, K., Schelde, K. & Olesen, J. E. (2011). Winter wheat yield response to climate variability in Denmark. Journal of Agricultural Science, Cambridge 149, 3347.CrossRefGoogle Scholar
Kuemmel, B. (2003). Theoretical investigation of the effects of field margin and hedges on crop yields. Agriculture, Ecosystems and Environment 95, 387392.CrossRefGoogle Scholar
Linke, R., Pfundtner, E., Bolhar-Nordenkampf, H. R., Dersch, G. & Meister, M. (2005). Crops and climate change: influences of changed growth conditions on water relations and yield of different cultural crops. Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften 17, 313314.Google Scholar
Martínez, E., Fuentes, J.-P., Silva, P., Valle, S. & Acevedo, E. (2008). Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil and Tillage Research 99, 232244.CrossRefGoogle Scholar
Mayus, M., Van Keulen, H. & Stroosnijder, L. (1999). A model of tree-crop competition for windbreak systems in the Sahel: description and evaluation. Agroforestry Systems 43, 183201.CrossRefGoogle Scholar
Morison, J. I. L. & Lawlor, D. W. (1999). Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell and Environment 22, 659682.CrossRefGoogle Scholar
Müller, W. (1993). Agroklimatische Kennzeichnung des Marchfelds, Beiheft 3 zu den Jahrbüchern der Zentralanstalt für Meteorologie und Geodynamik. Vienna: Eigenverlag.Google Scholar
Nakicenovic, N. & Swart, R. (2000). Emissions Scenarios – A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Nijbroeka, R., Hoogenboomb, G. & Jonesa, J. W. (2003). Optimizing irrigation management for a spatially variable soybean field. Agricultural Systems 76, 359377.CrossRefGoogle Scholar
Nuberg, I. K. (1998). Effect of shelter on temperate crops: a review to define research for Australian conditions. Agroforestry Systems 41, 334.CrossRefGoogle Scholar
Oberforster, M. & Werteker, M. (2009). Relative Vorzüglichkeit verschiedener Weizensorten in Abhängigkeit von Ertrag, Qualität und Erzeugerpreisen. In Werte – Wege – Wirkungen: Biolandbau im Spannungsfeld zwischen Ernährungssicherung, Markt und Klimawandel. Beiträge zur 10. Wissenschaftstagung zum Ökologischer Landbau, Zurich, 11–13 February 2009. Band 2: Tierhaltung, Agrarpolitik und Betriebswirtschaft, Märkte und Lebensmittel (Eds von Jochen Mayer, H., Alföldi, T., Leiber, F., Dubois, D., Fried, P., Heckendorn, F., Hillmann, E., Klocke, P., Lüscher, A., Riedel, S., Stolze, M., Strasser, F., van der Heijden, M. & Willer, H.), pp. 302305.Google Scholar
Olesen, J. E., Carter, T. R., Diaz-Ambrona, C. H., Fronzek, S., Heidmann, T., Hickler, T., Holt, T., Minguez, M. I., Morales, P., Palutikov, J., Quemada, M., Ruiz-Ramos, M., Rubæk, G., Sau, F., Smith, B. & Sykes, M. (2007). Uncertainties in projected impacts of climate change on European agriculture and ecosystems based on scenarios from regional climate models. Climatic Change 81 (Supp. 1), 123143.CrossRefGoogle Scholar
Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J. & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy 34, 96112.CrossRefGoogle Scholar
Orlandini, S., Nejedlik, P., Eitzinger, J., Alexandrov, V., Toulios, L., Calanca, P., Trnka, M. & Olesen, J. E. (2008). Impacts of climate change and variability on European agriculture: results of inventory analysis in COST 734 countries. Annals of the New York Academy of Sciences 1146, 338353.CrossRefGoogle ScholarPubMed
Osunbitan, J. A., Oyedele, D. J. & Adekalu, K. O. (2005). Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil and Tillage Research 82, 5764.CrossRefGoogle Scholar
Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., Patil, R. H., Ruget, F., Rumbaur, C., Takac, J., Trnka, M., Bindi, M., Caldag, B., Ewert, F., Ferrise, R., Mirschel, W., Saylan, L., Siska, B. & Rötter, R. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European Journal of Agronomy 35, 103114.CrossRefGoogle Scholar
Patil, R. H., Laegdsmand, M., Olesen, J. E. & Porter, J. R. (2010). Growth and yield response of winter wheat to soil warming and rainfall patterns. Journal of Agricultural Science, Cambridge 148, 553566.CrossRefGoogle Scholar
Peart, R. M., Jones, J. W., Curry, R. B., Boote, K. J. & Allen, L. H. (1989). Impact of climate change on crop yield in the southwestern USA: a simulation study. In The Potential Effects of Global Climate Change on the United States, Vol. 1 (Eds Smith, J. B. & Tirpak, D. A.), pp. 154. Washington, DC: USEPA.Google Scholar
Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 193, 120145.Google Scholar
Penman, H. L. (1963). Vegetation and Hydrology. Technical Communication No. 53. Harpenden, UK: Commonwealth Bureau of Soils.CrossRefGoogle Scholar
Rischbeck, P. M. (2007). Der Einfluss von Klimaänderung, Bodenbearbeitung und Saattermin auf den Wasserhaus halt und das Ertragspotential von Getreide im Marchfeld. Ph.D. Thesis, University of Natural Resources and Life Sciences, Vienna, Austria.Google Scholar
Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. (2011). Crop-climate models need an overhaul. Nature Climate Change 1, 175177.CrossRefGoogle Scholar
Rowe, E. C., Van Noordwijk, M., Suprayogo, D. & Cadisch, G. (2005). Nitrogen use efficiency of monoculture and hedgerow intercropping in the humid tropics. Plant and Soil 268, 6174.CrossRefGoogle Scholar
Seo, S. N. (2011). A geographically scaled analysis of adaptation to climate change with spatial models using agricultural systems in Africa. Journal of Agricultural Science, Cambridge 149, 437449.CrossRefGoogle Scholar
Shahabfar, A. & Eitzinger, J. (2011). Agricultural drought monitoring in semi-arid and arid areas using MODIS data. Journal of Agricultural Science, Cambridge 149, 403414.CrossRefGoogle Scholar
Singh, A. K., Tripathy, R. & Chopra, U. K. (2008). Evaluation of CERES-Wheat and CropSyst models for water–nitrogen interactions in wheat crop. Agricultural Water Management 95, 776786.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (2007). Climate Change 2007. Working Group I: The Physical Science Basis. Cambridge, UK: Cambridge University Press.Google Scholar
Thaler, S., Eitzinger, J., Rischbeck, P., Dubrovsky, M. & Trnka, M. (2010). Vulnerability of crops to climate change in Northeastern Austria. Bulgarian Journal of Meteorology and Hydrology 15, 5061.Google Scholar
Timsina, J., Singh, U., Badaruddin, M. & Meisner, C. (1998). Cultivar, nitrogen, and moisture effects on a rice–wheat sequence: experimentation and simulation. Agronomy Journal 90, 119130.CrossRefGoogle Scholar
Trnka, M., Dubrovsky, M. & Zalud, Z. (2004 a). Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Climatic Change 64, 227255.CrossRefGoogle Scholar
Trnka, M., Dubrovsky, M., Semerádová, D. & Zalud, Z. (2004 b). Projections of uncertainties in climate change scenarios into expected winter wheat yields. Theoretical and Applied Climatology 77, 229249.CrossRefGoogle Scholar
Trnka, M., Eitzinger, J., Dubrovsky, M., Semeradova, D., Stepanek, P., Hlavinka, P., Balek, J., Skalak, P., Farda, A., Formayer, H. & Zalud, Z. (2010 a). Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. Journal of Agricultural Science, Cambridge 148, 639656.CrossRefGoogle Scholar
Trnka, M., Eitzinger, J., Semerádová, D., Hlavinka, P., Balek, J., Dubrovský, M., Kubu, G., Štepánek, P., Thaler, S., Možný, M. & Žalud, Z. (2011 a). Expected changes in agroclimatic conditions in Central Europe. Climatic Change 108, 261289.CrossRefGoogle Scholar
Trnka, M., Kocmankova, E., Balek, J., Eitzinger, J., Ruget, F., Formayer, H., Hlavinka, P., Schaumberger, A., Horakova, V., Mozny, M. & Zalud, Z. (2010 b). Simple snow cover model for agrometeorological applications. Agricultural and Forest Meteorology 150, 11151127.CrossRefGoogle Scholar
Trnka, M., Olesen, J. E., Kersebaum, K.-C., Skjelvag, A. O., Eitzinger, J., Seguin, B., Peltonen-Sainio, P., Rötter, R., Iglesias, A., Orlandini, S., Dubrowsky, M., Hlavinka, P., Balek, J., Eckersten, H., Cloppet, E., Calanca, P., Gobin, A., Vucetic, V., Nejedlik, P., Kumar, S., Lalic, B., Mestre, A., Rossi, F., Kozyra, J., Alexandrov, V., Semerádová, D. & Žalud, Z. (2011 b). Agroclimatic conditions in Europe under climate change. Global Change Biology 17, 22982318.CrossRefGoogle Scholar
Tubiello, F. N., Amthor, J. S., Boote, K. J., Donatelli, M., Easterling, W., Fischer, G., Gifford, R. M., Howden, M., Reilly, J. & Rosenzweig, C. (2007). Crop response to elevated CO2 and world food supply. A comment on ‘Food for Thought…’ by Long et al., Science 312:1918–1921, 2006. European Journal of Agronomy 26, 215223.CrossRefGoogle Scholar
Tubiello, F. N., Donatelli, M., Rosenzweig, C. & Stockle, C. O. (2000). Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. European Journal of Agronomy 13, 179189.CrossRefGoogle Scholar
Tsuji, G., Hoogenboom, G. & Thornton, P. (1998). Understanding Options for Agricultural Production. Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Uhlir, P. F. & Carter, G. C. (1994). Crop Modelling and Related Environmental Data, a Focus on Applications for Arid and Semiarid Regions in Developing Countries. Paris, France: CODATA – Commission on Global Change Data.Google Scholar