Article contents
Evaluation of cellulolytic exogenous enzyme-containing microbial inoculants as feed additives for ruminant rations composed of low-quality roughage
Published online by Cambridge University Press: 11 August 2020
Abstract
The supplementation of ruminant diets with exogenous cellulolytic enzymes can improve their digestibility and feeding value. The objective of this study was to determine the effect of supplementing roughage (rice straw) and concentrate with inoculants containing four fungal strains (Pleurotus ostreatus, Phanerochaete chrysosporium, Trichoderma reesei and Trichoderma viride) and four bacterial strains (Paenibacillus polymyxa, Bacillus megaterium, Bacillus circulans and Bacillus subtilis), given separately or as a mixture, as a source of exogenous cellulolytic enzymes, on basic rumen parameters in vitro, including digestibility and methane production. A batch culture trial was used to select the best supplements, and a long-term rumen simulation technique (RUSITEC) was used to evaluate the effects of P. chrysosporium, B. subtilis, and a 1 : 1 mixture of these two on dietary component digestibility and fermentation parameters. In the batch culture evaluation, there were significant increases in the organic matter (OM) digestibility, the total gas production expressed as ml/g of dry matter, the OM, the neutral detergent fibre (NDF) and the acid detergent fibre (ADF) of the supplemented rations, as compared to the control, excluding the rations supplemented with T. viride and B. circulans. In the RUSITEC, the ration supplemented with mixed inoculants showed significantly higher digestibility of crude protein, ether extract, NDF and ADF than did the ration supplemented with the P. chrysosporium and B. subtilis inoculants. It can be concluded that the simultaneous use of fungal and bacterial exogenous cellulases on rice straw roughage improves its digestibility, without negative effects on other rumen parameters.
- Type
- Animal Research Paper
- Information
- Copyright
- Copyright © The Author(s), 2020. Published by Cambridge University Press
Footnotes
Contributed equally to this study.
References
A correction has been issued for this article:
- 6
- Cited by
Linked content
Please note a has been issued for this article.