Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T01:56:53.808Z Has data issue: false hasContentIssue false

Elevated carbon dioxide and temperature alters aggregate specific methane consumption in a tropical vertisol

Published online by Cambridge University Press:  23 February 2017

B. KOLLAH
Affiliation:
ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, 462038, India
U. AHIRWAR
Affiliation:
ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, 462038, India
S. R. MOHANTY*
Affiliation:
ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, 462038, India
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Experiments were carried out to determine methane (CH4) consumption in different soil (vertisol) aggregates under elevated carbon dioxide (eCO2) and temperature. Soil aggregates of <0·25 mm diameter (microaggregates), 0·25–1 mm diameter (mesoaggregates) and 1–2 mm diameter (macroaggregates) were incubated under different CO2 (400, 800 and 1200 µm/m or ppm CO2) and temperature (25, 35 and 45 °C) conditions. Methane consumption was high in mesoaggregates and low in microaggregates under ambient CO2 and temperature (25 °C). However, eCO2 and temperature significantly inhibited CH4 consumption and decreased culturable microbial numbers. Methane consumption in mesoaggregates was inhibited by 21–66% at 800–1200 ppm of CO2. Principal component analysis designated soil aggregate size as the most important component of variation, followed by temperature and CO2. Ordination biplot indicated eCO2 and temperature impacted negatively on CH4 consumption and culturable methanotrophs. Results highlighted that mesoaggregates of 0·25–1·00 mm are hotspots for CH4 consumption and that rising atmospheric CO2 and temperature may inhibit CH4 consumption significantly in a tropical vertisol.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Kaisi, M. M., Douelle, A. & Kwaw-Mensah, D. (2014). Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. Journal of Soil and Water Conservation 69, 574580.Google Scholar
Allen, E. (1989). Chemical Analysis of Ecological Materials. Oxford, UK: Blackwell Scientific Publications.Google Scholar
Alvarino, T., Komesli, O., Suarez, S., Lema, J. M. & Omil, F. (2016). The potential of the innovative SeMPAC process for enhancing the removal of recalcitrant organic micropollutants. Journal of Hazardous Materials 308, 2936.Google Scholar
Amann, R., Ludwig, W. & Schleifer, K. H. (1994). Identification of uncultured bacteria: a challenging task for molecular taxonomists. ASM News 60, 360365.Google Scholar
Amaral, J. A., Ekins, A., Richards, S. R. & Knowles, R. (1998). Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture. Applied and Environmental Microbiology 64, 520525.Google Scholar
Aronson, E. L., Allison, S. D. & Helliker, B. R. (2013). Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Frontiers in Microbiology 4, 225. doi: 10.3389/fmicb.2013.00225 Google Scholar
Bharati, K., Mohanty, S. R., Singh, D. P., Rao, V. R. & Adhya, T. K. (2000). Influence of incorporation or dual cropping of Azolla on methane emission from a flooded alluvial soil planted to rice in eastern India. Agriculture, Ecosystems & Environment 79, 7383.CrossRefGoogle Scholar
Billings, S. A., Schaeffer, S. M. & Evans, R. D. (2003). Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon. Soil Biology and Biochemistry 35, 643649.CrossRefGoogle Scholar
Bimüller, C., Kreyling, O., Kölbl, A., von Lützow, M. & Kögel-Knabner, I. (2016). Carbon and nitrogen mineralization in hierarchically structured aggregates of different size. Soil and Tillage Research 160, 2333.Google Scholar
Blankinship, J. C., Brown, J. R., Dijkstra, P. & Hungate, B. A. (2010). Effects of interactive global changes on methane uptake in an annual grassland. Journal of Geophysical Research: Biogeosciences 115, G02008. doi: 10.1029/2009JG001097.Google Scholar
Boeckx, P. & Van Cleemput, O. (1996). Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature, and nitrogen-turnover. Journal of Environmental Quality 25, 178183.CrossRefGoogle Scholar
Bowman, J. P. & Sayler, G. S. (1994). Optimization and maintenance of soluble methane monooxygenase activity in Methylosinustrichosporium OB3b. Biodegradation 5, 111.Google Scholar
Campo, J., Nierop, K. G. J., Cammeraat, E., Andreu, V. & Rubio, J. L. (2011). Application of pyrolysis-gas chromatography/mass spectrometry to study changes in the organic matter of macro-and microaggregates of a Mediterranean soil upon heating. Journal of Chromatography A 1218, 48174827.Google Scholar
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research 1, 245276.CrossRefGoogle ScholarPubMed
Conrad, R. (2007). Microbial ecology of methanogens and methanotrophs. Advances in Agronomy 96, 163.Google Scholar
Daebeler, A., Bodelier, P. L., Yan, Z., Hefting, M. M., Jia, Z. & Laanbroek, H. J. (2014). Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME Journal 8, 23972410.Google Scholar
Del Grosso, S., Ojima, D., Parton, W., Mosier, A., Peterson, G. & Schimel, D. (2002). Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environmental Pollution 116 (Suppl. 1), S75S83.Google Scholar
Dunfield, P., Knowles, R., Dumont, R. & Moore, T. R. (1993). Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biology and Biochemistry 25, 321326.Google Scholar
Dutaur, L. & Verchot, L. V. (2007). A global inventory of the soil CH4 sink. Global Biogeochemical Cycles 21, GB4013. doi: 10.1029/2006GB002734.Google Scholar
Fernández-Ugalde, O., Virto, I., Barré, P., Apesteguía, M., Enrique, A., Imaz, M. J. & Bescansa, P. (2014). Mechanisms of macroaggregate stabilisation by carbonates: implications for organic matter protection in semi-arid calcareous soils. Soil Research 52, 180192.Google Scholar
Graham, D. W., Korich, D. G., LeBlanc, R. P., Sinclair, N. A. & Arnold, R. G. (1992). Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Applied and Environmental Microbiology 58, 22312236.Google Scholar
Guan, J., Zhang, Y., Shi, R. J., Li, H., Han, S. Q. & Xu, H. (2012). Effects of elevated CO2 on forest soil CH4 consumption in Changbai Mountains. Journal of Applied Ecology 23, 328334.Google Scholar
He, R., Wooller, M. J., Pohlman, J. W., Tiedje, J. M. & Leigh, M. B. (2015). Methane-derived carbon flow through microbial communities in arctic lake sediments. Environmental Microbiology 17, 32333250.Google Scholar
Higgins, J. A., Kurbatov, A. V., Spaulding, N. E., Brook, E., Introne, D. S., Chimiak, L. M., Yan, Y., Mayewski, P. A. & Bender, M. L. (2015). Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. Proceedings of the National Academy of Sciences of the United States of America 112, 68876891.Google Scholar
Ho, A., De Roy, K., Thas, O., De Neve, J., Hoefman, S., Vandamme, P., Heylen, K. & Boon, N. (2014). The more, the merrier: heterotroph richness stimulates methanotrophic activity. The ISME Journal 8, 19451948.Google Scholar
Hobbs, P. R., Sayre, K. & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society of London B: Biological Sciences 363, 543555.Google Scholar
Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. (1995). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiology Letters 132, 203208.Google Scholar
Horz, H. P., Yimga, M. T. & Liesack, W. (2001). Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Applied and Environmental Microbiology 67, 41774185.Google Scholar
Ineson, P., Coward, P. A. & Hartwig, U. A. (1998). Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the Swiss free air carbon dioxide enrichment experiment. Plant and Soil 198, 8995.Google Scholar
IPCC (2007). Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Jäckel, U., Schnell, S. & Conrad, R. (2004). Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil. Soil Biology and Biochemistry 36, 835840.Google Scholar
Jat, R. A., Wani, S. P. & Sahrawat, K. L. (2012). Conservation agriculture in the semi-arid tropics: prospects and problems. Advances in Agronomy 117, 191273.Google Scholar
Katuwal, S., Arthur, E., Tuller, M., Moldrup, P. & de Jonge, L. W. (2015). Quantification of soil pore network complexity with X-ray computed tomography and gas transport measurements. Soil Science Society of America Journal 79, 15771589.Google Scholar
Kolb, S., Carbrera, A., Kammann, C., Kämpfer, P., Conrad, R. & Jäckel, U. (2005 a). Quantitative impact of CO2 enriched atmosphere on abundances of methanotrophic bacteria in a meadow soil. Biology and Fertility of Soils 41, 337342.Google Scholar
Kolb, S., Knief, C., Dunfield, P. F. & Conrad, R. (2005 b). Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environmental Microbiology 7, 11501161.Google Scholar
Le Mer, J. & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37, 2550.Google Scholar
Lofton, D. D., Whalen, S. C. & Hershey, A. E. (2014). Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes. Hydrobiologia 721, 209222.CrossRefGoogle Scholar
Mancinelli, R. L. (1995). The regulation of methane oxidation in soil. Annual Review of Microbiology 49, 581605.Google Scholar
Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A. (2007). Climate Change 2007: Mitigation of Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Mohanty, S. R., Bharati, K., Deepa, N., Rao, V. R. & Adhya, T. K. (2000). Influence of heavy metals on methane oxidation in tropical rice soils. Ecotoxicology and Environmental Safety 47, 277284.Google Scholar
Mohanty, S. R., Bodelier, P. L. E. & Conrad, R. (2007). Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiology Ecology 62, 2431.Google Scholar
Mohanty, S. R., Kollah, B., Sharma, V. K., Singh, A. B., Singh, M. & Rao, A. S. (2014). Methane oxidation and methane driven redox process during sequential reduction of a flooded soil ecosystem. Annals of Microbiology 64, 6574.Google Scholar
Mohanty, S., Kollah, B., Chaudhary, R. S., Singh, A. B. & Singh, M. (2015). Methane uptake in tropical soybean–wheat agroecosystem under different fertilizer regimes. Environmental Earth Sciences 74, 50495061.Google Scholar
Mueller, K. E., Hobbie, S. E., Chorover, J., Reich, P. B., Eisenhauer, N., Castellano, M. J., Chadwick, O. A., Dobies, T., Hale, C. M., Jagodziński, A. M., Kałucka, I., Kieliszewska-Rokicka, B., Modrzyński, J., Rożen, A., Skorupski, M., Sobczyk, L., Stasińska, M., Trocha, L. K., Weiner, J., Wierzbicka, A. & Oleksyn, J. (2015). Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 123, 313327.CrossRefGoogle Scholar
Pal, D. K., Bhattacharyya, T., Chandran, P., Ray, S. K., Satyavathi, P. L. A., Durge, S. L., Raja, P. & Maurya, U. K. (2009). Vertisols (cracking clay soils) in a climosequence of Peninsular India: evidence for Holocene climate changes. Quaternary International 209, 621.Google Scholar
Plaza-Bonilla, D., Cantero-Martínez, C., Bareche, J., Arrúe, J. L. & Álvaro-Fuentes, J. (2014). Soil carbon dioxide and methane fluxes as affected by tillage and N fertilization in dryland conditions. Plant and Soil 381, 111130.Google Scholar
Pretty, J. & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany 114, 15711596.Google Scholar
Rahman, S. (2003). Environmental impacts of modern agricultural technology diffusion in Bangladesh: an analysis of farmers’ perceptions and their determinants. Journal of Environmental Management 68, 183191.Google Scholar
Rand, M. C., Greenberg, A. E. & Taras, M. J. (1976). Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association.Google Scholar
Rogers, H. H., Runion, G. B. & Krupa, S. V. (1994). Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution 83, 155189.Google Scholar
Rowe, R., Todd, R. & Waide, J. (1977). Microtechnique for most-probable-number analysis. Applied and Environmental Microbiology 33, 675680.Google Scholar
Sainju, U. M. (2006). Carbon and nitrogen pools in soil aggregates separated by dry and wet sieving methods. Soil Science 171, 937949.Google Scholar
Schmidt, T. M. & Waldron, C. (2015). Microbial diversity in soils of agricultural landscapes and its relation to ecosystem function. In The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability (Eds Hamilton, S. K., Doll, J. E. & Robertson, G. P.), pp. 135157. New York: Oxford University Press.Google Scholar
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S. & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature 478, 4956.Google Scholar
Six, J., Elliott, E. T. & Paustian, K. (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry 32, 20992103.Google Scholar
Stock, M., Hoefman, S., Kerckhof, F.-M., Boon, N., De Vos, P., De Baets, B., Heylen, K. & Waegeman, W. (2013). Exploration and prediction of interactions between methanotrophs and heterotrophs. Research in Microbiology 164, 10451054.Google Scholar
Thierfelder, C., Mwila, M. & Rusinamhodzi, L. (2013). Conservation agriculture in eastern and southern provinces of Zambia: long-term effects on soil quality and maize productivity. Soil and Tillage Research 126, 246258.Google Scholar
Verhagen, F. J. M. & Laanbroek, H. J. (1991). Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Applied and Environmental Microbiology 57, 32553263.Google Scholar
Wieczorek, A. S., Drake, H. L. & Kolb, S. (2011). Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiology & Ecology 77, 2839.Google Scholar
Yang, Z., Wullschleger, S. D., Liang, L., Graham, D. E. & Gu, B. (2016). Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil. Soil Biology and Biochemistry 95, 202211.Google Scholar