Published online by Cambridge University Press: 27 March 2009
A ruminant animal is largely dependent upon microbial protein synthesized within the reticulorumen for amino acids to meet its requirements for maintenance and production. The major precursor for rumen microbial protein synthesis is ammonia arising both from degradation of feed proteins within the rumen and from nitrogen recycled to the rumen. The concentration of rumen ammonia-N required to sustain maximal rates of microbial protein synthesis in vivo has been variably reported to range from 22 to 235 mg ammonia-N/1 rumen fluid (Miller, 1982). Most experiments which have investigated the concentrations of rumen ammonia-N required for maximal rates of microbial protein synthesis have used the addition of urea to the diet as the means of increasing rumen ammonia-N concentrations. However, little attention has been paid to the effects upon rumen ammonia-N concentrations and upon the efficiency of rumen microbial protein synthesis of supplying increasing amounts of a readily degradable protein in the diet, although Beardsley et al.(1977) found that as increasing amounts of soya-bean meal were fed to sheep, net losses of N across the forestomachs of the sheep were increased. In this paper, two experiments are described in which increasing amounts of soya-bean meal were fed to sheep receiving a basal ration of rolled barley and hay; the digestion of organic matter (OM) and of amino acid N (AAN) within the rumen, the net quantities of microbial AAN entering the small intestine and the efficiency of rumen microbial AAN synthesis were measured.