Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T06:43:25.507Z Has data issue: false hasContentIssue false

Effects of the comminution rate and microbial contamination of particles in the rumen on accuracy of in situ estimates of digestion of protein and amino acids of dehydrated sugar beet pulp

Published online by Cambridge University Press:  09 May 2013

J. GONZÁLEZ*
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
J. M. ARROYO
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
J. A. GUEVARA-GONZÁLEZ
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
R. MOUBI
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
O. PIQUER
Affiliation:
Departamento de Producción Animal, Sanidad Animal y Ciencia y Tecnología de los Alimentos, Universidad CEU Cardenal Herrera, 46113 Moncada-Valencia, Spain
V. J. MOYA
Affiliation:
Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Valencia, 46022 Valencia, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Effects of the correction of microbial contamination (using 15N techniques) and of considering the comminution rate (kc) of particles in the rumen on effective estimates of the ruminally undegraded (RU) fraction and its intestinal effective digestibility (IED) were examined in a sample of dehydrated sugar beet pulp (DBP) generating composite samples (from rumen-incubated residues) representative of the chemical composition of RU. Tested fractions were dry matter (DM), organic matter (OM, tested only for RU), crude protein (CP) and amino acids (AA). The study was performed on three rumen and duodenum cannulated wethers fed with a 2 : 1 (fresh weight basis) chopped oat hay-to-concentrate diet supplied at 40 g DM/kg BW0·75 in six equal meals per day. The DBP showed sigmoid degradation kinetics: the fractional degradation rate increased by 5·8 times as time (h) increased from 0 to . The kc rate (measured in the diet concentrate) represented 5·74% of the total rumen retention time of particles. As a result, the RU of DM was over-evaluated by 6·53% when kc was not considered. Microbial contamination of RU was high as in DM as in CP. Therefore, the overestimation of RU of DM was increased to 12·2% when this contamination was not corrected. The lack of this correction also led to large over-evaluations of RU and IED of CP and AA. As a result, the overestimation of the intestinal digested fraction was 40·9% for CP and 45·0% for total analysed AA. This overestimation varied largely among AA (from 18·9 to 88·7%). Corrected proportions of RU and IED were also variable among AA. Hypotheses on the causes of this variability are given. Resultant changes in the AA profile of the intestinal digested protein had some negative impact on the supply of essential AA and cysteine without affecting lysine. This problem is limited because the microbial protein synthesized from DBP fermentation in the rumen is largely predominant in the AA supply to the host.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcaide, E. M., García, A. I. M. & Aguilera, J. F. (2000). A comparative study of nutrient digestibility, kinetics of degradation and passage and rumen fermentation pattern in goats and sheep offered good quality diets. Livestock Production Science 64, 215223.CrossRefGoogle Scholar
AOAC (2000). Official Methods of Analysis 17th edition. Gaithersburg, MD: AOAC.Google Scholar
Arroyo, J. M. & González, J. (2013). Effects of the ruminal comminution rate and microbial contamination of particles on accuracy of in situ estimates of ruminal degradability and intestinal digestibility of feedstuffs. Journal of Animal Physiology and Animal Nutrition 97, 109118.Google Scholar
Barrie, A., Brookes, S. T., Prosser, S. J. & Debney, S. (1995). High productivity analysis of 15N and 13C in soil/plant research. Fertilizer research 42, 4359.Google Scholar
Bernard, L., Marvalin, O., Yang, W. Z. & Poncet, C. (1988). Colonisation bacterienne de different types d'aliments incubes in sacco dans le rumen; consequences pour l'estimation de la dégradabilité de l'azote. Reproduction Nutrition Development 28 (Suppl. 1), 105106.Google Scholar
BOE (2007). Ley 32/2007 de 7 de Noviembre para el cuidado de los animales, en su explotación, transporte, experimentación y sacrificio. Boletín Oficial del Estado (BOE) 268, 4591445920.Google Scholar
CVB (2002). Central Veevoederbureau. Veevodertabel (Dutch Feeding Tables). Lelystad, the Netherlands: Central Veevoederbureau.Google Scholar
Dhanoa, M. S., Siddons, R. C., France, J. & Gale, D. L. (1985). A multicompartmental model to describe marker excretion patterns in ruminant faeces. British Journal of Nutrition 53, 663671.Google Scholar
Ellis, W., Matis, J. H. & Lascano, C. (1979). Quantitating ruminal turnover. Federation Proceedings 38, 27022706.Google Scholar
Gómez, G. (1997). Degradabilidad ruminal de las materias nitrogenadas de los ensilados de hierba y de maiz. PhD Thesis, Universidad Politécnica de Madrid, Madrid, Spain.Google Scholar
González, J., Ouarti, M., Rodríguez, C. A. & Alvir, M. R. (2006). Effects of considering the rate of comminution of particles and microbial contamination on accuracy of in situ studies of feed protein degradability in ruminants. Animal Feed Science and Technology 125, 8998.CrossRefGoogle Scholar
González, J., Ouarti, M., Rodríguez, C. A. & Centeno, C. (2009). A simplified management of the in situ evaluation of feedstuffs in ruminants: application to the study of the digestive availability of protein and amino acids corrected for the ruminal microbial contamination. Archives of Animal Nutrition 63, 304320.Google Scholar
González, J., Faría-Marmol, J., Arroyo, J. M., Centeno, C. & Martínez, A. (2010). Effects of ensiling on in situ ruminal degradability and intestinal digestibility of corn forage. Archives of Animal Nutrition 64, 204220.Google Scholar
Grenet, E. & Barry, P. (1990). In vivo and in sacco digestibility and rumen microbial degradation of cell walls of soyabean and rape integuments and of dehydrated beet pulp in sheep, observed by scanning electron microscopy. Journal of Agricultural Science, Cambridge 115, 429435.CrossRefGoogle Scholar
INRA (2007). Alimentation des Bovins, Ovins et Caprins – Besoins des Animaux – Valeurs des Aliments – Tables INRA 2007. Versailles, France: Quae.Google Scholar
Li, X. B., Kieliszewski, M. & Lamport, D. T. A. (1990). A chenopod extensin lacks repetitive tetrahydroxyproline blocks. Plant Physiology 92, 327333.Google Scholar
Liu, H. J., Chang, B. Y., Yan, H. W., Yu, F. H. & Liu, X. X. (1995). Determination of amino acids in food and feed by derivatization with 6-aminoquinolyl-Nhydroxysuccinimidyl carbamate and reverse-phase liquid chromatographic separation. Journal of AOAC International 78, 736744.CrossRefGoogle Scholar
Madsen, J. & Hvelplund, T. (1985). Protein degradation in the rumen. A comparison between in vivo, nylon bag, in vitro and buffer measurements. Acta Agriculturae Scandinavica 25 (Suppl.), 103124.Google Scholar
Mahadevan, S., Erfle, J. D. & Sauer, F. D. (1980). Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms. Journal of Animal Science 50, 723728.CrossRefGoogle ScholarPubMed
NRC (2001). Nutrient Requirements of Dairy Cattle. Washington, DC: National Academy Press.Google Scholar
Pereira, J. C. & González, J. (2004). Rumen degradability of dehydrated beet pulp and dehydrated citrus pulp. Animal Research 53, 99110.Google Scholar
Redshaw, M. S., Flicker, J., Fontaine, J., Heimbeck, W. & Hess, V. (2010). Expect the Best-AminoDat® 4.0. Essen, Germany: Evonik¸ Degussa, GmbH, Health and Nutrition.Google Scholar
Robertson, J. B. & Van Soest, P. J. (1981). The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Food (Eds James, W. P. T. & Theander, O.), pp. 123158. New York: Marcel Dekker Inc.Google Scholar
Rodríguez, C. A. & González, J. (2006). In situ study of the relevance of bacterial adherence to feed particles on the contamination and accuracy of rumen degradability estimates of feeds of vegetable origin. British Journal of Nutrition 96, 316325.Google Scholar
Rodríguez, C. A., González, J., Alvir, M. R., Repetto, J. L., Centeno, C. & Lamrani, F. (2000). Composition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by feed intake. British Journal of Nutrition 84, 369376.Google Scholar
SAS Institute (1990). SAS/STAT® User's Guide, vols. I and II, Version 6. 4th edn. Cary, NC: SAS Institute Inc.Google Scholar
Sauvant, D., Perez, J. M. & Tran, G. (2002). Tables de Composition et de Valeur Nutritive des Matières Premières Festinées aux Animaux d’Élevage: Porcs, Volailles, Bovins, Ovins, Caprins, Lapins, Chevaux, Poissons. Paris, France: INRA.Google Scholar
Showalter, A. M. (1993). Structure and function of plant cell wall proteins. Plant Cell 5, 923.Google Scholar
Udén, P., Colucci, P. E. & Van Soest, P. J. (1980). Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. Journal of the Science of Food and Agriculture 31, 625632.Google Scholar
Van Milgen, J. & Baumont, R. (1995). Models based on variable fractional digestion rates to describe ruminal in situ digestion. British Journal of Nutrition 73, 793807.Google Scholar
Van Milgen, J., Murphy, M. R. & Berger, L. L. (1991). A compartmental model to analyze ruminal digestion. Journal of Dairy Science 74, 25152529.CrossRefGoogle ScholarPubMed
Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant. 2nd edn. Ithaca, NY: Cornell University Press.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Vérité, R. (1987). Present situation of protein evaluation for ruminants in France: the PDI system. In Feed Evaluation and Protein Requirement Systems for Ruminants (Eds Jarrige, R. & Alderman, G.), pp. 1120. Brussels, Luxembourg: Commission of the European Communities.Google Scholar