Article contents
Effects of separation, dilution, washing and acidification on ammonia volatilization from surface-applied cattle slurry
Published online by Cambridge University Press: 27 March 2009
Summary
Treatments which lowered the rate of ammonia volatilization from surface-applied cattle slurry were evaluated in three field experiments during 1989/90 at the Agricultural Research Institute of Northern Ireland. The relative effects of separation, dilution with water before application and washing with a water spray after application, on ammonia volatilization rates were compared over 4 days using ventilated enclosures. As the loss rate of ammonia during the first 4 days after application was highly correlated with the loss rate over the first 4 hours after application, the loss rate in the first 4 hours was used as a rapid method to assess the efficacy of various combinations of separation, dilution and acidification. Ammonia volatilization loss rates from treatment combinations were compared to the loss rate from whole slurry.
A 50% decrease in ammonia volatilization was achieved by separation through a 0·4 mm mesh, separation through a 10·0 mm mesh plus dilution with 86% by volume of water, or separation through a 2·0 mm mesh plus washing with 53% by volume of water.
A 75% decrease in ammonia volatilization was achieved by acidification to pH 6·5, or combinations of separation and dilution, namely separation through a 0·4 mm mesh plus 50% dilution or separation through a 5·0 mm mesh plus 100% dilution.
A 90% decrease in ammonia volatilization was achieved by acidification to pH 6·0, dilution by 50% plus acidification to pH 6·5, or separation through a 0·4 mm mesh plus acidification to pH 6·5.
The effects of separation and acidification on ammonia volatilization were cumulative. There was a highly significant inverse linear relationship between ammonia volatilization rate and volume of nitric acid used. Adding 10 M nitric acid at 1·4% by volume lowered volatilization by 75% of that from whole slurry and increased the nitrogen content of the slurry by 2 g N/l, making it a more balanced NPK fertilizer for cut swards. Because the variable value of cattle slurry is due to loss of nitrogen as ammonia and smothering of the sward with slurry solids, a combination of separation or dilution to lower sward contamination and acidification with nitric acid to lower volatilization may be the best practical option for improving cattle slurry as a fertilizer for cut grass.
- Type
- Crops and Soils
- Information
- Copyright
- Copyright © Cambridge University Press 1992
References
REFERENCES
- 45
- Cited by