Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T04:07:34.419Z Has data issue: false hasContentIssue false

Effect of increasing concentrations of total dissolved salts in drinking water on digestion, performance and water balance in heifers

Published online by Cambridge University Press:  02 March 2017

J. N. ALVES
Affiliation:
Federal University of Paraiba (PDIZ- UFPB), Areia, Paraiba, Brazil
G. G. L. ARAÚJO
Affiliation:
Brazilian Agricultural Research Corporation (Embrapa), Petrolina, Pernambuco, Brazil
S. G. NETO
Affiliation:
Department of Animal Science, Federal University of Paraiba (DZO-UFPB), Areia, Paraiba, Brazil
T. V. VOLTOLINI
Affiliation:
Brazilian Agricultural Research Corporation (Embrapa), Petrolina, Pernambuco, Brazil
R. D. SANTOS
Affiliation:
Brazilian Agricultural Research Corporation (Embrapa), Petrolina, Pernambuco, Brazil
P. R. ROSA
Affiliation:
Federal University of São Francisco Valley (Vale), Petrolina, Pernambuco, Brazil
L. GUAN
Affiliation:
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
T. McALLISTER
Affiliation:
Lethbridge Research Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
A. L. A. NEVES*
Affiliation:
Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil
*
*To whom all correspondence should be addressed: Email: [email protected]

Summary

In the near future, ruminants may be forced to consume low-quality water since potable drinking water will become increasingly scarce in some regions of the world. A completely randomized design trial was completed to evaluate the effect of increasing concentrations of total dissolved salts (TDS) (640, 3187, 5740 and 8326 mg TDS/l) in drinking water on the performance, diet digestibility, microbial protein synthesis, nitrogen (N) and water balance using 24 Red Sindhi heifers (200 ± 5 kg) that were fed Buffel (Cenchrus ciliaris) grass hay and concentrate in a ratio of 50 : 50. After a 15-day diet adaptation period, the digestion study was completed over a 5-day period and the performance trial was completed over a 56-day period. Dry matter intake, average daily gain, feed:gain, intake and digestibility of most feed components were unaffected by the concentration of salt in the water. However, intake and digestibility of neutral detergent fibre declined linearly as TDS inclusion rate increased. Further, the inclusion of TDS resulted in a linear increase in the intake of drinking water and total (food plus drinking) water intake. Similarly, TDS inclusion levels resulted in a linear increase in total water excretion, with urine being the major route of water excretion. In contrast, increasing concentrations of TDS caused a linear decrease in creatinine and allantoin excretions. Finally, increasing the inclusion rate of TDS resulted in a linear decrease in N retention and a linear increase in urinary N excretion, which may pose a considerable challenge for farmers with respect to the reduction and management of nutrient losses.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. S. (2000). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science 83, 15981624.CrossRefGoogle ScholarPubMed
AOAC (Association of Official Analytical Chemists) (1995). Official Methods of Analysis, 16th edn. Arlington, VA: AOAC.Google Scholar
Bahman, A. M., Rooke, J. A. & Topps, J. H. (1993). The performance of dairy-cows offered drinking-water of low or high salinity in a hot arid climate. Animal Production 57, 2328.Google Scholar
Bannink, A., Valk, H. & Van Vuuren, A. M. (1999). Intake and excretion of sodium, potassium, and nitrogen and the effects on urine production by lactating dairy cows. Journal of Dairy Science 82, 10081018.CrossRefGoogle ScholarPubMed
Barbosa, A. M., Valadares, R. F. D., Valadares Filho, S. C., Veras, R. M. L., Leao, M. I., Detmann, E., Paulino, M. F., Marcondes, M. I. & Souza, M. A. (2006). Effect of urinary collection days, concentrate levels and protein sources on creatinine, urea and purine derivatives excretions and microbial protein synthesis in Nellore cattle. Revista Brasileira de Zootecnia 35, 870877.CrossRefGoogle Scholar
Bates, B. C., Kundzewicz, Z. W., Wu, S. & Palutikof, J. P. (2008). Climate Change and Water. IPCC Technical Paper VI. Geneva, Switzerland: IPCC Secretariat.Google Scholar
Beke, G. J. & Hironaka, R. (1991). Toxicity to beef-cattle of sulfur in saline well water – a case-study. Science of the Total Environment 101, 281290.CrossRefGoogle ScholarPubMed
Carter, R. R. & Grovum, W. L. (1990). A review of the physiological significance of hypertonic body-fluids on feed-intake and ruminal function – salivation, motility and microbes. Journal of Animal Science 68, 28112832.CrossRefGoogle ScholarPubMed
Chen, X. B. & Gomes, M. J. (1992). Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives: an Overview of Technical Details. Occasional Publication 1992. Aberdeen, UK: Rowett Research Institute.Google Scholar
Chen, X. B., Chen, Y. K., Franklin, M. F., Orskov, E. R. & Shand, W. J. (1992). The effect of feed-intake and body-weight on purine derivative excretion and microbial protein supply in sheep. Journal of Animal Science 70, 15341542.CrossRefGoogle ScholarPubMed
Chen, X. B., Mejia, A. T., Kyle, D. J. & Ørskov, E. R. (1995). Evaluation of the use of the purine derivative: creatinine ratio in spot urine and plasma samples as an index of microbial protein supply in ruminants: studies in sheep. Journal of Agricultural Science, Cambridge 125, 137143.CrossRefGoogle Scholar
Chizzotti, M. L., Valadares Filho, S. C., Diniz Valadares, R. F., Martins Chizzotti, F. H. & Tedeschi, L. O. (2008). Determination of creatinine excretion and evaluation of spot urine sampling in Holstein cattle. Livestock Science 113, 218225.CrossRefGoogle Scholar
CONCEA (National Council for the Control of Animal Experimentation) (2008). Procedures for the Scientific Use of Animals. Based on CLAUSE VII of the 1st Paragraph in Article 225 of the Brazilian Federal Constitution. Brasília, DF, Brazil: Brazilian Government through the National Council for the Control of Animal Experimentation (CONCEA) and Institutional Animal Care and Use Committees (CEUA).Google Scholar
da Silva, J. F. C. & Leão, M. I. (1979). Fundamentos de Nutrição dos Ruminantes. Piracicaba, SP, Brazil: Livroceres.Google Scholar
Dado, R. G. & Allen, M. S. (1995). Intake limitations, feeding behavior, and rumen function of cows challenged with rumen fill from dietary fiber or inert bulk. Journal of Dairy Science 78, 118133.CrossRefGoogle ScholarPubMed
Dahlborn, K., Akerlind, M. & Gustafson, G. (1998). Water intake by dairy cows selected for high or low milk-fat percentage when fed two forage to concentrate ratios with hay or silage. Swedish Journal of Agricultural Research (Sweden) 28, 167176.Google Scholar
de Lima, E. A., do Nascimento, D. A., Guilera, S. C. & Brandão, L. C. R. (2008). Mapa de variação da concentração total de sais das águas subterrâneas da região nordeste do Brasil. In XV Congresso Brasileiro de Águas Subterrâneas (Eds Lopes Neto, P. V. & Feitosa, E. C.), pp. 111. São Paulo, SP, Brasil: Associação Brasileira de Águas Subterrâneas.Google Scholar
Detmann, E., Souza, M. A., Valadares Filho, S. C., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S., Cabral, L. S., Pina, D. S., Ladeira, M. M. & Azevedo, J. A. G. (2012). Métodos para Análises de Alimentos – INCT – Ciência Animal. Visconde do Rio Branco, MG, Brazil: Editora UFV.Google Scholar
EMBRAPA (1997). Manual de Métodos de Análises de Solo/Centro Nacional de Pesquisa de Solos. Rio de Janeiro, RJ, Brazil: Brazilian Agricultural Research Corporation (EMBRAPA).Google Scholar
Herczeg, A. L., Simpson, H. J. & Mazor, E. (1993). Transport of soluble salts in a large semiarid basin – River Murray, Australia. Journal of Hydrology 144, 5984.CrossRefGoogle Scholar
Hristov, A. N., Hanigan, M., Cole, A., Todd, R., McAllister, T. A., Ndegwa, P. M. & Rotz, A. (2011). Review: ammonia emissions from dairy farms and beef feedlots. Canadian Journal of Animal Science 91, 135.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York and London: Academic Press.Google Scholar
Jaster, E. H., Schuh, J. D. & Wegner, T. N. (1978). Physiological-effects of saline drinking water on high producing dairy cows. Journal of Dairy Science 61, 6671.CrossRefGoogle Scholar
Kume, S., Nonaka, K., Oshita, T., Kozakai, T. & Hirooka, H. (2008). Effects of urinary excretion of nitrogen, potassium and sodium on urine volume in dairy cows. Livestock Science 115, 2833.CrossRefGoogle Scholar
Kume, S., Nonaka, K., Oshita, T. & Kozakai, T. (2010). Evaluation of drinking water intake, feed water intake and total water intake in dry and lactating cows fed silages. Livestock Science 128, 4651.CrossRefGoogle Scholar
Le Houérou, H. N. (1996). Climate change, drought and desertification. Journal of Arid Environments 34, 133185.CrossRefGoogle Scholar
Lofgreen, G. P. & Garrett, W. N. (1954). Creatinine excretion and specific gravity as related to the composition of the 9, 10, 11th rib cut of Hereford steers. Journal of Animal Science 13, 496500.CrossRefGoogle Scholar
Maltz, E. & Silanikove, N. (1996). Kidney function and nitrogen balance of high yielding dairy cows at the onset of lactation. Journal of Dairy Science 79, 16211626.CrossRefGoogle ScholarPubMed
Masters, D. G., Benes, S. E. & Norman, H. C. (2007). Biosaline agriculture for forage and livestock production. Agriculture, Ecosystems & Environment 119, 234248.CrossRefGoogle Scholar
Mertens, D. R. (1987). Predicting intake and digestibility using mathematical-models of ruminal function. Journal of Animal Science 64, 15481558.CrossRefGoogle ScholarPubMed
Moorby, J. M., Dewhurst, R. J., Evans, R. T. & Danelón, J. L. (2006). Effects of dairy cow diet forage proportion on duodenal nutrient supply and urinary purine derivative excretion. Journal of Dairy Science 89, 35523562.CrossRefGoogle ScholarPubMed
Murphy, M. R. (1992). Water metabolism of dairy cattle. Journal of Dairy Science 75, 326333.CrossRefGoogle ScholarPubMed
NRC (2001). Nutrient Requirements of Dairy Cattle, 7th revised edn. Washington, DC: The National Academy Press.Google Scholar
Ørskov, E. R. & Macleod, N. A. (1982). The determination of the minimal nitrogen excretion in steers and dairy cows and its physiological and practical implications. British Journal of Nutrition 47, 625636.Google ScholarPubMed
Paquay, R., De Baere, R. & Lousse, A. (1970). Statistical research on the fate of water in the adult cow. II. The lactating cow. Journal of Agricultural Science, Cambridge 75, 251255.CrossRefGoogle Scholar
Phillips, C. J. C., Mohamed, M. O. & Chiy, P. C. (2015). Effects of duration of salt supplementation of sheep on rumen metabolism and the accumulation of elements. Animal Production Science 55, 603610.CrossRefGoogle Scholar
Saliba, E., Rodriguez, N. & Pilo-Veloso, D. (2006). Lipe, an external natural marker for digestibility studies. Journal of Animal Science 84, 359360.Google Scholar
Sanchez, W. K., McGuire, M. A. & Beede, D. K. (1994). Macromineral nutrition by heat stress interactions in dairy cattle: review and original research. Journal of Dairy Science 77, 20512079.CrossRefGoogle ScholarPubMed
SAS (2002). SAS User's Guide, 9·1 edn. Cary, NC: SAS Institute Inc.Google Scholar
Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70, 35623577.CrossRefGoogle ScholarPubMed
Solomon, R., Miron, J., Ben-Ghedalia, D. & Zomberg, Z. (1995). Performance of high producing dairy-cows offered drinking-water of high and low-salinity in the Arava desert. Journal of Dairy Science 78, 620624.CrossRefGoogle ScholarPubMed
Spek, J. W., Bannink, A., Gort, G., Hendriks, W. H. & Dijkstra, J. (2012). Effect of sodium chloride intake on urine volume, urinary urea excretion, and milk urea concentration in lactating dairy cattle. Journal of Dairy Science 95, 72887298.CrossRefGoogle ScholarPubMed
Thomson, D. J., Beever, D. E., Latham, M. J., Sharpe, M. E. & Terry, R. A. (1978). The effect of inclusion of mineral salts in the diet on dilution rate, the pattern of rumen fermentation and the composition of the rumen microflora. Journal of Agricultural Science, Cambridge 91, 17.CrossRefGoogle Scholar
Valadares, R. F. D., Broderick, G. A., Valadares Filho, S. C. & Clayton, M. K. (1999). Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. Journal of Dairy Science 82, 26862696.CrossRefGoogle ScholarPubMed
Valtorta, S. E., Gallardo, M. R., Sbodio, O. A., Revelli, G. R., Arakaki, C., Leva, P. E., Gaggiotti, M. & Tercero, E. J. (2008). Water salinity effects on performance and rumen parameters of lactating grazing Holstein cows. International Journal of Biometeorology 52, 239247.CrossRefGoogle ScholarPubMed
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Verbic, J., Chen, X. B., MacLeod, N. A. & Ørskov, E. R. (1990). Excretion of purine derivatives by ruminants – effect of microbial nucleic-acid infusion on purine derivative excretion by steers. Journal of Agricultural Science, Cambridge 114, 243248.CrossRefGoogle Scholar
Weeth, H. J. & Hunter, J. E. (1971). Drinking of sulfate-water by cattle. Journal of Animal Science 32, 277281.CrossRefGoogle ScholarPubMed
Weeth, H. J., Haverland, L. H. & Cassard, D. W. (1960). Consumption of sodium chloride water by heifers. Journal of Animal Science 19, 845851.CrossRefGoogle Scholar
Weiss, W. P. & Wyatt, D. J. (2000). Effect of oil content and kernel processing of corn silage on digestibility and milk production by dairy cows. Journal of Dairy Science 83, 351358.CrossRefGoogle ScholarPubMed
Willms, W. D., Kenzie, O. R., McAllister, T. A., Colwell, D., Veira, D., Wilmshurst, J. F., Entz, T. & Olson, M. E. (2002). Effects of water quality on cattle performance. Journal of Range Management 55, 452460.CrossRefGoogle Scholar