Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T23:20:21.948Z Has data issue: false hasContentIssue false

Different roughage:concentrate ratios and water supplies to feedlot lambs: carcass characteristics and meat chemical composition

Published online by Cambridge University Press:  02 March 2020

C. M. Silva Moura*
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia Baiano, Xique-Xique, Bahia, Brazil
G. G. L. Araújo
Affiliation:
Embrapa Semiárido, 56302-970, Petrolina, Brazil
B. Y. S. Oliveira
Affiliation:
Federal University of Bahia, 40170-115, Salvador, Brazil
J. A. G. Azevêdo
Affiliation:
Santa Cruz State University, 34002-035, Ilhéus, Brazil
E. C. Pimenta Filho
Affiliation:
Department of Animal Science, Federal University of Paraíba, 58397-000, Areia, Brazil
P. S. Azevedo
Affiliation:
Department of Animal Science, Federal University of Paraíba, 58397-000, Areia, Brazil
E. M. Santos
Affiliation:
Department of Animal Science, Federal University of Paraíba, 58397-000, Areia, Brazil
*
Author for correspondence: C. M. Silva Moura, E-mail: [email protected]

Abstract

The current study evaluated the effects of dietary roughage:concentrate (R:C) ratios and water supply on the carcass characteristics and yield of lambs. Forty Santa Inês crossbred lambs with an average body weight (BW) of 19 ± 2.8 kg were evaluated in a completely randomized design with a 2 × 2 factorial arrangement consisting of two proportions of roughage and concentrate (30:70 and 70:30) and two levels of water supply (ad libitum and restricted to 0.5). The animals were slaughtered at an average weight of 28 ± 31 kg. Centesimal composition, colour parameters (L*, a* and b*), shear force, cooking losses and pH were determined on the Longissimus lumborum muscle. There was no interaction effect between the R:C ratio and water supply on the evaluated variables. Total BW gain, average daily gain and final BW were affected by water restriction and R:C ratio. Water restriction reduced total BW gain, average daily gain and final BW. No effect of water restriction was detected on slaughter weight, centesimal composition, colour variations, shear force, pH, weight or yield of carcass. No effect of water restriction and diets was observed on the cuts, except for neck weight. Carcass weight and yield were affected by the R:C ratios. Restricting the water supply to 0.5 does not affect the carcass weight or yield of Santa Inês crossbred lambs or their meat quality characteristics (centesimal composition, colour, shear force and pH measurements). A higher proportion of concentrate in the diet results in heavier hot and cold carcass weights.

Type
Animal Research Paper
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agle, M, Hristov, AN, Zaman, S, Schneider, C, Ndegwa, PM and Vaddella, VK (2010) Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. Journal Dairy Science 93, 42114222.CrossRefGoogle ScholarPubMed
Ahmed Muna, MM and El Shafei Ammar, I (2001) Effects of water and feed restriction on body weight change and nitrogen balance in desert goats fed high and low quality forages. Small Ruminant Research 41, 1927.CrossRefGoogle Scholar
AOAC (1990) Official Methods of Analysis, 15th Edn.Washington: Association OF Official Analytical Chemists.Google Scholar
APAC (2017) Agencia Pernambucana de água e clima. Available at http://www.apac.pe.gov.br/busca.php.Google Scholar
Asplund, JM and Pfander, WH (1972) Effects of water restriction on nutrient digestibility in sheep receiving fixed water: feed ratios. Journal of Animal Science 35, 12711274.CrossRefGoogle Scholar
Ben Salem, H and Smith, T (2008) Feeding strategies to increase small ruminant production in dry environments. Small Ruminant Research 77, 174194.CrossRefGoogle Scholar
Bonagurio, S, Pérez, JRO, Furusho-Garcia, IF, Santos, CL and Lima, AL (2004) Composição centesimal da carne de cordeiros Santa Inês puros e de seus mestiços com Texel abatidos com diferentes pesos. Revista Brasileira de Zootecnia 6, 23872393.CrossRefGoogle Scholar
Cezar, MF and Sousa, WH (2007) Carcaças ovinas e caprinas: obtenção, avaliação e classificação. Uberaba: Agropecuária Tropical, 232p.Google Scholar
Chedid, M, Jaber, LS, Giger-Reverdin, S, Duvaux-Ponter, C and Hamadeh, SK (2014) Review: water stress in sheep raised under arid conditions. Canadian Journal of Animal Science 94, 243257.CrossRefGoogle Scholar
Clementino, RH, Sousa, WH, Medeiros, NA, Cunha, MGG, Gonzaga Neto, S, Carvalho, FFR and Cavalcante, MAB (2007) Influência dos níveis de crescimento sobre os contratos comerciais, os componentes não-carcaça e os componentes da perna de cordeiros confinados. Revista Brasileira de Zootecnia 36, 681688.CrossRefGoogle Scholar
Fischer, A, Kaiser, T and Pickert, J (2017) Studies on drink water intake of fallow deer, sheep and mouflon inder semi-natural pasture conditions. Grassland Science 63, 4653.CrossRefGoogle Scholar
Fleck, ŽC, Kozačinski, L, Njari, B, Marenčić, D, Mršić, G, Špiranec, K, Špoljarić, D, Čop, MJ, Živković, M and Popović, M (2015) Technological properties and chemical composition of the meat of sheep fed with Agaricus bisporus supplement. Veterinarski Arhiv 6, 591600.Google Scholar
Folch, J, Lees, M and Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. Journal Biological Chemistry 226, 497509.Google ScholarPubMed
Forbes, JM (2007) Voluntary Food Intake and Diet Selection in Farm Animals, 2nd Edn.Wallingford, UK: CABI Publishing.CrossRefGoogle Scholar
Gularte, MA, Treptow, RO, Pouey, JLF and Osório, JC (2000) Idade e sexo na maciez da carne ovina da raça Corriedale. Ciência Rural 30, 485488.CrossRefGoogle Scholar
Hocquette, JF, Ortigues-Martya, I, Pethickb, D, Herpinc, P and Fernandezd, X (1998) Nutritional and hormonal regulation of energy metabolism in skeletal muscles of meat-producing animals. Livestock Production Science 56, 115143.CrossRefGoogle Scholar
Jaber, L, Chedid, M and Hamadeh, S (2013) Water stress in small ruminants. In Akıncı, Ş (ed.), Responses of Organisms to Water Stress. Rijeka, Croatia: INTECH Open Access Publisher, pp. 115150.Google Scholar
Jacob, RH, Pethick, DW, Clark, P, D'Souza, DN, Hopkins, DL and White, J (2006) Quantifying the hydration status of lambs in relation to carcass characteristics. Australian Journal of Experimental Agriculture 46, 429437.CrossRefGoogle Scholar
Lima, MC, Vargas Júnior, FM, Martins, CF, Santos Pinto, G, Nubiato, KEZ and Fernandes, ARM (2012) Características de carcaça de cordeiros nativos de Mato Grosso do Sul terminados em confinamento. Revista Agrarian 5, 384392.Google Scholar
Medeiros, GR, Carvalho, FFR, Batista, AMV, Dutra Junior, WM, Santos, GRA and Andrade, DKB (2009) Efeitos dos níveis de concentrado sobre características de carcaça de ovinos Morada Nova em confinamento. Revista Brasileira de Zootecnia 38, 718727.CrossRefGoogle Scholar
Mertens, DR (1997) Creating a system for meeting the fiber requirements of dairy cows. Journal of Dairy Science 80, 14631481.CrossRefGoogle ScholarPubMed
NRC (National Research Council) (1989) Nutrient Requirements of Dairy Cattle, 6th rev. Edn.Washington, DC: National Academy Press.Google Scholar
NRC (National Research Council) (2007) Nutrient Requirements of Small Ruminants, 6th rev.Washington, DC: National Academy Press.Google Scholar
NRC National Research Council (1996) Nutrient Requirements of Beef Cattle, 7th Edn.Washington, DC: National Academy Press, 242p.Google Scholar
Oddy, VH (1993) Regulation of muscle protein metabolism in sheep and lambs: nutritional, endocrine and genetic aspects. Australian Journal of Agricultural Research 44, 901913.CrossRefGoogle Scholar
Parente, N, Parente, MOM, Gomes, RMS, Sodré, WJS, Moreira Filho, MA, Rodrigues, MC and Araújo, JS (2016) Increase levels of concentrate on digestibility, performance and ingestibe behavior in lambs. Revista Brasileira de Saúde e Produção Animal 17, 186.CrossRefGoogle Scholar
Pereira, ES, Pimentel, PG, Fontenele, RM, Medeiros, NA, Regadas Filho, JGL and Villarroel, ABS (2010) Características e rendimentos de carcaça e de cortes em ovinos Santa Inês, alimentados com diferentes concentrações de energia metabolizável. Acta Scientiarum. Animal Sciences 32, 431437.CrossRefGoogle Scholar
Pereira, ES, Oliveira, AP, Heinzen, EL, Araújo, TLAC and Pereira, MWF (2015) Exigências nutricionais e desempenho de ovinos deslanados em crescimento. In 52ª Reunião Anual da Sociedade Brasileira de Zootecnia – SBZ. Belo Horizonte- MG. Anais... Belo Horizonte: Sociedade Brasileira de Zootecnia, 2015, pp. 3234.Google Scholar
Ren, W, Zhao, FF, Zhang, AZ, Jiang, N, Wu Q, QIL, Liu, XM, Yang, K, Liu, W, Zhu, S, Wang, LX and Y, UM (2016) Gastrointestinal tract development in fattening lambs fed diets with different amylose to amylopectin ratios. Canadian Journal of Animal Science 96, 425433.CrossRefGoogle Scholar
Sainz, RD (1996) Qualidade de carcaças e da carne bovina. In Reunião Anual Da Sociedade Brasileira De Zootecnia, 33, 1996, Anais Fortaleza: SBZ, 3–14.Google Scholar
Santos, FAP and Mendonça, AP (2011) Metabolismo de proteínas. In Berchielli, TT, Pires, AV and Oliveira, SG (eds), Nutrição De Ruminantes, 2nd Edn.Jaboticabal, SP: FUNEP, pp. 265292.Google Scholar
Sañudo, C, Sierra, I, María, GA, Olleta, JL and Santolaria, P (1997) Breed effect on carcass and meat quality of suckling lambs. Meat Science 46, 357365.CrossRefGoogle Scholar
SAS (2002) SAS User's Guide Statistics, Version 9.1. Cary, NC, USA: SAS Institute Inc.Google Scholar
Silva, CM, Araújo, GGL, Oliveira, BYS, Azevêdo, JAG and Furtado, DA (2016) Performance and economic viability of feedlot sheep fed different levels of roughage, concentrate, and water. Semina: Ciências Agrárias 37, 15951606.Google Scholar
Silva Sobrinho, AG (2005) Produção de carne ovina com qualidade. In: Simpósio de Qualidade da Carne, v. 2, Jaboticabal. Anais… Jaboticabal: Funep, 2005. pp. 25–27.Google Scholar
Sousa, WH, Cartaxo, FQ, Costa, RG, Cezar, MF, Cunha, MGG, Pereira Filho, JM and Santos, NM (2012) Biological end economic performance of feedlot lambs feeding on diets with different energy densities. Revista Brasileira de Zootecnia 41, 12851291.CrossRefGoogle Scholar
Tibin, MAM, Bushara, I, Elemam, MB, Tibin, IM and Jadalla, JB (2011) Carcass characteristics of desert sheep under range conditions in north kordofan state, Sudan. Animal Feed Science and Technology 2, 439444.Google Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Weiss, WP (1999) Energy prediction equations for ruminant feeds. In: CORNELL NUTRITION CONFERENCE FEED MANUFACTURES, 61., 1999, Ithaca. Proceedings… Ithaca: Cornell University, 1999, pp. 176185.Google Scholar
Wheeler, TL, Shackelford, SD and Koohmaraie, M (1995) Standardized Warner-Bratzler shear force procedures for meat tenderness measurement. Clay Center: Roman L. Hruska U.S. MARC. USDA. 7p.Google Scholar
Wickens, GE (1998) Ecophysiology of Economic Plants in Arid and Semiarid Lands. New York: Springer, p. 335.CrossRefGoogle Scholar