Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Chantre, Guillermo R.
Blanco, Aníbal M.
Lodovichi, Mariela V.
Bandoni, Alberto J.
Sabbatini, Mario R.
López, Ricardo L.
Vigna, Mario R.
and
Gigón, Ramón
2012.
Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach.
Computers and Electronics in Agriculture,
Vol. 88,
Issue. ,
p.
95.
Cao, R.
Francisco-Fernández, M.
Anand, A.
Bastida, F.
and
González-Andújar, J. L.
2013.
Modeling Bromus diandrus Seedling Emergence Using Nonparametric Estimation.
Journal of Agricultural, Biological, and Environmental Statistics,
Vol. 18,
Issue. 1,
p.
64.
García, Addy L.
Recasens, Jordi
Forcella, Frank
Torra, Joel
and
Royo-Esnal, Aritz
2013.
Hydrothermal Emergence Model for Ripgut Brome (Bromus diandrus).
Weed Science,
Vol. 61,
Issue. 1,
p.
146.
Wu, Tiee-Jian
Hsu, Chih-Yuan
Chen, Huang-Yu
and
Yu, Hui-Chun
2014.
Root $$n$$ n estimates of vectors of integrated density partial derivative functionals.
Annals of the Institute of Statistical Mathematics,
Vol. 66,
Issue. 5,
p.
865.
CHANTRE, G. R.
BLANCO, A. M.
FORCELLA, F.
VAN ACKER, R. C.
SABBATINI, M. R.
and
GONZALEZ-ANDUJAR, J. L.
2014.
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence.
The Journal of Agricultural Science,
Vol. 152,
Issue. 2,
p.
254.
Blanco, Aníbal M.
Chantre, Guillermo R.
Lodovichi, Mariela V.
Bandoni, J. Alberto
López, Ricardo L.
Vigna, Mario R.
Gigón, Ramón
and
Sabbatini, Mario R.
2014.
Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach.
Ecological Modelling,
Vol. 272,
Issue. ,
p.
293.
Reyes, Miguel
Francisco-Fernández, Mario
and
Cao, Ricardo
2016.
Nonparametric kernel density estimation for general grouped data.
Journal of Nonparametric Statistics,
Vol. 28,
Issue. 2,
p.
235.
Gonzalez‐Andujar, J L
Chantre, G R
Morvillo, C
Blanco, A M
Forcella, F
and
Freckleton, Rob
2016.
Predicting field weed emergence with empirical models and soft computing techniques.
Weed Research,
Vol. 56,
Issue. 6,
p.
415.
Gonzalez‐Andujar, J L
Francisco‐Fernandez, M
Cao, R
Reyes, M
Urbano, J M
Forcella, F
Bastida, F
and
Bastiaans, Lammert
2016.
A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence.
Weed Research,
Vol. 56,
Issue. 5,
p.
367.
Reyes, Miguel
Francisco-Fernández, Mario
and
Cao, Ricardo
2017.
Bandwidth selection in kernel density estimation for interval-grouped data.
TEST,
Vol. 26,
Issue. 3,
p.
527.
Barreiro‐Ures, Daniel
Francisco‐Fernández, Mario
Cao, Ricardo
Fraguela, Basilio B.
Doallo, Ramón
González‐Andújar, José Luis
and
Reyes, Miguel
2019.
Analysis of interval‐grouped data in weed science: The binnednp Rcpp package.
Ecology and Evolution,
Vol. 9,
Issue. 19,
p.
10903.
Bagavathiannan, Muthukumar V.
Beckie, Hugh J.
Chantre, Guillermo R.
Gonzalez-Andujar, Jose L.
Leon, Ramon G.
Neve, Paul
Poggio, Santiago L.
Schutte, Brian J.
Somerville, Gayle J.
Werle, Rodrigo
and
Acker, Rene Van
2020.
Simulation Models on the Ecology and Management of Arable Weeds: Structure, Quantitative Insights, and Applications.
Agronomy,
Vol. 10,
Issue. 10,
p.
1611.
Royo-Esnal, Aritz
Torra, Joel
and
Chantre, Guillermo R.
2020.
Decision Support Systems for Weed Management.
p.
85.
Sousa-Ortega, Carlos
Royo-Esnal, Aritz
and
Urbano, José María
2021.
Predicting Seedling Emergence of Three Canarygrass (Phalaris) Species under Semi-Arid Conditions Using Parametric and Non-Parametric Models.
Agronomy,
Vol. 11,
Issue. 5,
p.
893.
Brown, Bryan
Gallandt, Eric R.
DiTommaso, Antonio
Salon, Paul
Smith, Richard G.
Ryan, Matthew R.
and
Cordeau, Stéphane
2022.
Improving Weed Management Based on the Timing of Emergence Peaks: A Case Study of Problematic Weeds in Northeast USA.
Frontiers in Agronomy,
Vol. 4,
Issue. ,
Renzi, Juan P.
Traversa, Guadalupe
Vigna, Mario R.
and
Chantre, Guillermo R.
2022.
Climate effect on Avena fatua field emergence dynamics: A 38‐year experiment in the semiarid Pampean region of Argentina.
Annals of Applied Biology,
Vol. 181,
Issue. 2,
p.
182.
Guidetti, Oliver A.
Speelman, Craig P.
and
Bouhlas, Peter
2023.
The WACDT, a modern vigilance task for network defense.
Frontiers in Neuroergonomics,
Vol. 4,
Issue. ,
Sousa‐Ortega, Carlos
and
Alcantara, Maria Cristina
2023.
Validation of a new tool to predict the weed emergence in Spain.
Pest Management Science,
Vol. 79,
Issue. 11,
p.
4414.
Marschner, Caroline A.
Colucci, Isabella
Stup, Rebecca S.
Westbrook, Anna S.
Brunharo, Caio A. C. G.
DiTommaso, Antonio
and
Mesgaran, Mohsen B.
2024.
Modeling weed seedling emergence for time-specific weed management: a systematic review.
Weed Science,
Vol. 72,
Issue. 4,
p.
313.
B., Vinoth
Prakash, V. S.
and
B. N., Shivakumar
2024.
Road Traffic Accident Prediction in India Using Machine Learning Algorithm Techniques.
p.
1.