Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T21:13:15.706Z Has data issue: false hasContentIssue false

A comparison of sweet sorghum and maize as first-generation bioethanol feedstocks in Greece

Published online by Cambridge University Press:  27 June 2014

C. E. VLACHOS
Affiliation:
Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
N. A. MARIOLIS
Affiliation:
Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
G. N. SKARACIS*
Affiliation:
Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

According to the EU 28/2009 directive, member states are mandated to substitute 10% of fossil fuels used in transportation with biofuels by the year 2020. Bioethanol production is expected to contribute significantly towards fulfilling Greece's obligations. First-generation bioethanol, produced from amylaceous and sugar crops, is the most important biofuel globally. Maize (Zea mays L.) is the main feedstock for production worldwide, while sweet sorghum (Sorghum bicolor L. Moench), although a promising raw material source, has not yet enjoyed substantial commercial exploitation due to the high seasonality of the crop. Sustainability criteria set by the EU constitute a key factor in the characterization and future use of biofuels. A 3-year study including 20 maize and 4 sweet sorghum varieties was conducted in order to compare these two crops in terms of emitted greenhouse gases (GHG) during the cultivation phase as well as regarding emission savings by substituting bioethanol for petrol/gasoline. Both crops demonstrated promising bioethanol yields reaching 5235·7 and 6443·7 l/ha/yr for maize and sweet sorghum, respectively, and showed that they could be employed towards first-generation bioethanol production in Greece. Sweet sorghum varieties produced higher bioethanol yields per hectare coupled with lower emissions during the cultivation phase and better overall GHG savings compared to maize.

Type
Crops and Soils Review
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amorim, H. V., Basso, L. C. & Lopes, M. L. (2009). Sugar cane juice and molasses, beet molasses and sweet sorghum: Composition and usage. In The Alcohol Textbook, 5th edn (Eds Ingledew, W. M., Kelsal, D. R., Austin, G. D. & Kluhspies, C.), pp. 3946. Nottingham, UK: Nottingham University Press.Google Scholar
Biograce (2013). The Biograce GHG Calculation Tool: A Recognised Voluntary Scheme, Version 4b. Utrecht, The Netherlands: BioGrace. Available from: http://www.biograce.net/content/ghgcalculationtools/oldversions (accessed March 2014).Google Scholar
De Klein, C., Novoa, R. S. A., Ogle, S., Smith, K. A., Rochette, P., Wirth, T. C., McConkey, B., Mosier, A., Rypdal, K., Walsh, M. & Williams, S. A. (2006). N2O emissions from managed soils, and CO2 emissions from lime and urea application. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 4. Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programme (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.), pp. 11.111.54. Hayama, Japan: IGES.Google Scholar
Dercas, N. P., Panoutsou, C. S., Dalianis, C. D. & Sooter, C. A. (1994). Sweet sorghum (Sorghum bicolor (L.) Moench) response to four irrigation and two nitrogen fertilization rates. In Biomass for Energy, Environment, Agriculture and Industry: Proceedings of the 8th European Biomass Conference (Eds Chartier, Ph., Beenakers, A. A. C. M. & Grassi, G.), pp. 629639. Oxford, UK: Elsevier Science Ltd.Google Scholar
EC (2009). Directive 2009/28/EC of The European Parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/ EC and 2003/30/EC. Official Journal of the European Union L140, 1662.Google Scholar
Hellenic Statistical Authority (ELSTAT) (2010). Concise Statistical Yearbook 2009. Athens, Greece: ELSTAT.Google Scholar
Hoffmann-Thoma, G., Hinkel, K., Nicolay, P. & Willenbrink, J. (1996). Sucrose accumulation in sweet sorghum stalk internodes in relation to growth. Physiologia Plantarum 97, 277284.CrossRefGoogle Scholar
IDAE (2011). Evaluacion del Balance de Gases de Efecto Invernadero en la Produccion de Biocarburantes. Estudios Técnicos PER 2011–2020 No. 7. Madrid: Instituto para la Diversificación v Ahorro de la Energía.Google Scholar
Ingledew, W. M. (2009). Yeasts: physiology, nutrition and ethanol production. In The Alcohol Textbook, 5th edn (Eds Ingledew, W. M., Kelsal, D. R., Austin, G. D. & Kluhspies, C.), pp. 101114. Nottingham, UK: Nottingham University Press.Google Scholar
Kim, M. & Day, D. F. (2011). Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology and Biotechnology 38, 803807.CrossRefGoogle ScholarPubMed
Kim, S. & Dale, B. E. (2005). Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions. Biomass and Bioenergy 28, 475489.CrossRefGoogle Scholar
Lewis, S. M. (2007). Method and systems for producing ethanol using raw starch and selected plant material. US Patent Application 2007/0178567 A1. Alexandria, VA: US Patent & Trademark Office. Available from: http://www.google.gm/patents/US20070178567 (accessed March 2014).Google Scholar
Maraseni, T. N., Mushtaq, S. & Maroulis, J. (2009). Greenhouse gas emissions from rice farming inputs: a cross-country assessment. Journal of Agricultural Science, Cambridge 147, 117126.CrossRefGoogle Scholar
Maraseni, T. N., Cockfield, G. & Maroulis, J. (2010). An assessment of greenhouse gas emissions: implications for the Australian cotton industry. Journal of Agricultural Science, Cambridge 148, 501510.CrossRefGoogle Scholar
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426428.CrossRefGoogle Scholar
Monti, A. & Venturi, G. (2003). Comparison of the energy performance of fibre sorghum, sweet sorghum and wheat monocultures in northern Italy. European Journal of Agronomy 19, 3543.CrossRefGoogle Scholar
Nichols, N. N. & Bothast, R. J. (2008). Production of ethanol from grain. In Genetic Improvement of Bioenergy Crops (Ed. Vermerris, W.), pp. 7588. New York: Springer.CrossRefGoogle Scholar
Pilgrim, C. (2009). Status of the worldwide fuel alcohol industry. In The Alcohol Textbook, 5th edn (Eds Ingledew, W. M., Kelsal, D. R., Austin, G. D. & Kluhspies, C.), pp. 718. Nottingham, UK: Nottingham University Press.Google Scholar
Rao, S. P., Rao, S. S., Seetharama, N., Umakath, A. V., Reddy, P. S., Reddy, B. V. S. & Gowda, C. L. L. (2009). Sweet Sorghum for Biofuel and Strategies for its Improvement. Information Bulletin No. 77. Patancheru, India: ICRISAT.Google Scholar
Romanelli, T. L. & Milan, M. (2004). Energy balance methodology and modeling of supplementary forage production. In Proceedings of the IV Biennial International Workshop on Advances in Energy Studies (Eds Ortega, S. & Ulgiati, S.), pp. 315321. São Paulo, Brazil: University of Campinas.Google Scholar
Rooney, W. L., Blumenthal, J., Bean, B. & Mullet, J. E. (2007). Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts & Biorefining 1, 147157.CrossRefGoogle Scholar
Saballos, A. (2008). Development and utilization of sorghum as a bioenergy crop. In Genetic Improvement of Bioenergy Crops (Ed. Vermerris, W.), pp. 211248. New York, NY: Springer.CrossRefGoogle Scholar
Stefaniak, T. R., Dahlberg, J. A., Bean, B. W., Dighe, N., Wolfrum, E. J. & Rooney, W. L. (2012). Variation in biomass composition components among forage, biomass, sorghum-sudangrass, and sweet sorghum types. Crop Science 52, 19491954.CrossRefGoogle Scholar
Suman, M., Singh, M. & Suman, B. L. (2006). Source of energy input and output for sustainable sorghum cultivation. Indian Journal of Crop Science 1, 135137.Google Scholar
Venturi, P. & Venturi, G. (2003). Analysis of energy comparison for crops in European agricultural systems. Biomass & Bioenergy 25, 235255.CrossRefGoogle Scholar
Vlachos, C. E., Mariolis, N. & Skaracis, G. N. (2014). A comparative greenhouse gas emission analysis of oilseed crops for biodiesel production in Greece. Journal of Agricultural Science, Cambridge 152, 263274.CrossRefGoogle Scholar
Wang, M., Wu, M. & Huo, H. (2007). Life cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environmental Research Letters 2, 024001. doi: 10.1088/1748-9326/2/2/024001.CrossRefGoogle Scholar
Zhao, Y. L., Dolat, A., Steinberger, Y., Wang, X., Osman, A. & Xie, G. H. (2009). Biomass yield and changes in chemical composition of sweet sorghum cultivars for biofuel. Field Crops Research 111, 5564.CrossRefGoogle Scholar