Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T05:44:50.719Z Has data issue: false hasContentIssue false

Comparison of multi-criteria decision models to approach the trade-off between environmental sustainability and economical viability – a case of nitrogen balance in dairy farming systems in Reunion Island

Published online by Cambridge University Press:  04 July 2008

V. ALARY*
Affiliation:
CIRAD, UR Système d’élevage, TA C-18/A, campus de Baillarguet, F-34398 Montpellier Cedex 5, France
M. GOUSSEFF
Affiliation:
CIRAD, UR Système d'élevage, Station de Ligne paradis, 7 Chemin de l'IRAT, F-97410 St. Pierre, France
U. B. NIDUMOLU
Affiliation:
CIRAD, UR Système d'élevage, Station de Ligne paradis, 7 Chemin de l'IRAT, F-97410 St. Pierre, France
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

In the context of market liberalization and in order to avoid trade distortions, European farmers risk experiencing a restriction of subsidies for market products. Moreover, policy makers cannot underestimate the public concerns about the non-productive functions of agriculture, such as environmental management. The current study illustrates different ways of modelling the trade-offs between environmental sustainability and economic viability for dairy farming systems in Reunion Island. Nitrogen (N) balance at the farm level is the result of complex interactions between pasture and animal management and between bio-technical and socio-economic management. Therefore, different multi-criteria models were tested using a common dynamic bio-economical model that integrated the different sub-systems of the farm and their interactions. Nitrogen excess mitigation in Reunion Island dairy farming systems was used as an illustration of a non-productive objective taken into account in the decision process modelling.

The simulations highlighted the necessity to adapt the nitrogen mitigation objective to the technical level of local territories in order to adopt environmentally friendly practices, without jeopardizing the local dairy sector. Moreover, the models generated a different set of solutions that varied according to how non-production functions are integrated in farmers' decision-making processes. This constitutes a relevant basis for discussions between farmers and decision makers.

Type
Modelling Animal Systems Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alary, V., Messad, S., Taché, C. & Tillard, E. (2002). Approche de la diversité des systèmes d’élevage laitiers à La Réunion. Revue d'Elevage et de Médecine Vétérinaire des Pays Tropicaux 55, 285297.Google Scholar
Candler, W., Fortuny-Amat, J. & McCarl, B. (1981). The potential role of multilevel programming in agricultural economics. American Journal of Agricultural Economics 63, 521531.Google Scholar
Charnes, A. & Cooper, W. W. (1961). Management Models and Industrial Applications of Linear Programming, Vol. 1. New York: John Wiley and Sons.Google Scholar
Edwards, W. (1977). How to use multiattribute utility measurement for social decision making. IEEE Transactions on Systems, Man and Cybernetics SMC-7, 326340.CrossRefGoogle Scholar
Gousseff, M., Grimaud, P., Tillard, E. & Lecomte, P. (2002). Flux d'azotes dans les exploitations laitières bovines à La Réunion. In Les outils d'aide à la gestion des fourrages (Ed. Grimaud, P.), pp. 6364. St. Pierre, La Réunion: Pôle Elevage du CIRAD à La Réunion.Google Scholar
Hazell, P. B. R. & Norton, R. D. (1986). Mathematical Programming for Economic Analysis in Agriculture. London: MacMillan.Google Scholar
Huirne, R. B. M. & Hardaker, J. B. (1998). A multi-attribute utility model to optimize sow replacement decisions. European Review of Agricultural Economics 25, 488505.CrossRefGoogle Scholar
Ignizio, J. P. (1978). A review of goal programming: a tool for multi-objective analysis. Journal of Operational Research Society 29, 11091119.Google Scholar
Keeney, R. L. (1974). Multiplicative utility functions. Operational Research 22, 2234.CrossRefGoogle Scholar
Keeney, R. L. & Raiffa, H. (2003). Decisions with Multiple Objectives – Preferences and Values Tradeoffs. Cambridge, UK: Cambridge University Press.Google Scholar
Lecomte, P., Boval, M., Guerin, H., Ickowicz, A., Huguenin, J. & Limbourg, P. (2004). Carbone et élevage des ruminants. In Gestion de la biomasse, érosion et séquestration du carbone (Eds Roose, E., De Noni, G., Prat, C., Ganry, F. & Bourgeois, G.) Montpellier, France: AGROPOLIS International.Google Scholar
Lee, S. M. (1972). Goal Programming for Decision Analysis. Philadelphia, PA, USA: Auerbach Publishers.Google Scholar
Louhichi, K., Alary, V. & Grimaud, P. (2004). A dynamic model to analyse the bio-technical and socio-economic interactions in dairy farming systems on Réunion Island. Animal Research 53, 363–82.Google Scholar
Nielsen, A. H. & Kristensen, I. S. (2005). Nitrogen and phosphorus surpluses on Danish dairy and pig farms in relation to farm characteristics. Livestock Production Science 96, 97107.CrossRefGoogle Scholar
Piech, B. & Rehman, T. (1993). Application of multiple criteria decision making method to farm planning: a case study. Agricultural Systems 41, 305319.CrossRefGoogle Scholar
Romero, C. & Rehman, T. (2003). Multiple Criteria Analysis for Agricultural Decisions, 2nd edn. Developments in Agricultural Economics 11. Amsterdam, The Netherlands: Elsevier.Google Scholar
Steinshamn, H., Thuen, E., Bleken, M.A., Brenøe, U.T., Ekerholt, G. & Yri, C. (2004). Utilization of nitrogen (N) and phosphorus (P) in an organic dairy farming system in Norway. Agriculture, Ecosystems and Environment 104, 509522.Google Scholar
Stilmant, D., Fabry, L., Parache, P. & Lecomte, Ph. (2000). Appraisal and control of environmental incidence of dairy farming systems in East Belgium Normative vs farm practices approach. In European Farming and Rural Systems Research and Extension into the Next Millennium: Environmental, Agricultural and Socio-economic Issues. Proceedings of the Fourth European Symposium of the Associations of Farming Systems Research and Extension (Eds Koutsouris, A. & Zorini, L. O.). Volos, Greece: International Farming Systems Association.Google Scholar
Tauer, L. W. (1983). Target MOTAD. American Journal of Agricultural Economics 65, 606610.CrossRefGoogle Scholar
Yu, P. L. (1973). A class of solutions for group decision problems. Management Science 19, 936946.Google Scholar
Zeleny, M. (1976). Multicriteria Simplex Method: a FORTRAN routine. In Multiple Criteria Decision Making: Kyoto 1975 (Ed. Zeleny, M.), pp. 323345. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar