Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Anniballe, R.
Casa, R.
Castaldi, F.
Fascetti, F.
Fusilli, F.
Huang, W.
Laneve, G.
Marzialetti, P.
Palombo, A.
Pascucci, S.
Pierdicca, N.
Pignatti, S.
Qiaoyun, X.
Santini, F.
Silvestro, P. C.
Yang, H.
and
Yang, G.
2015.
Sinergistic use of radar and optical data for agricultural data products assimilation: A case study in Central Italy.
p.
3381.
Pignatti, S.
Acito, N.
Amato, U.
Casa, R.
Castaldi, F.
Coluzzi, R.
De Bonis, R.
Diani, M.
Imbrenda, V.
Laneve, G.
Matteoli, S.
Palombo, A.
Pascucci, S.
Santini, F.
Simoniello, T.
Ananasso, C.
Corsini, G.
and
Cuomo, V.
2015.
Environmental products overview of the Italian hyperspectral prisma mission: The SAP4PRISMA project.
p.
3997.
Potůčková, Markéta
Červená, Lucie
Kupková, Lucie
Lhotáková, Zuzana
Lukeš, Petr
Hanuš, Jan
Novotný, Jan
and
Albrechtová, Jana
2016.
Comparison of Reflectance Measurements Acquired with a Contact Probe and an Integration Sphere: Implications for the Spectral Properties of Vegetation at a Leaf Level.
Sensors,
Vol. 16,
Issue. 11,
p.
1801.
Stellacci, A. M.
Castrignanò, A.
Troccoli, A.
Basso, B.
and
Buttafuoco, G.
2016.
Selecting optimal hyperspectral bands to discriminate nitrogen status in durum wheat: a comparison of statistical approaches.
Environmental Monitoring and Assessment,
Vol. 188,
Issue. 3,
Diago, M.P.
Rey-Carames, C.
Le Moigne, M.
Fadaili, E.M.
Tardaguila, J.
and
Cerovic, Z.G.
2016.
Calibration of non-invasive fluorescence-based sensors for the manual and on-the-go assessment of grapevine vegetative status in the field.
Australian Journal of Grape and Wine Research,
Vol. 22,
Issue. 3,
p.
438.
Vincini, M.
Calegari, F.
and
Casa, R.
2016.
Sensitivity of leaf chlorophyll empirical estimators obtained at Sentinel-2 spectral resolution for different canopy structures.
Precision Agriculture,
Vol. 17,
Issue. 3,
p.
313.
Yongjun, Ding
and
Jingjing, Zhang
2016.
Extraction of REPs from leaves reflectance spectrum for estimation of chlorophyll content.
IFAC-PapersOnLine,
Vol. 49,
Issue. 16,
p.
205.
Castaldi, Fabio
Castrignanò, Annamaria
and
Casa, Raffaele
2016.
A data fusion and spatial data analysis approach for the estimation of wheat grain nitrogen uptake from satellite data.
International Journal of Remote Sensing,
Vol. 37,
Issue. 18,
p.
4317.
Viera Silva, D
Dos Anjos, L
Brito-Rocha, E
Dalmolin, AC
and
Mielke, MS
2016.
Calibration of a multi-species model for chlorophyll estimation in seedlings of Neotropical tree species using hand-held leaf absorbance meters and spectral reflectance.
iForest - Biogeosciences and Forestry,
Vol. 9,
Issue. 5,
p.
829.
Kong, Weiping
Huang, Wenjiang
Zhou, Xianfeng
Ye, Huichun
Dong, Yingying
and
Casa, Raffaele
2017.
Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
Sensors,
Vol. 17,
Issue. 12,
p.
2711.
Šestak, Ivana
Mesić, Milan
Zgorelec, Željka
and
Perčin, Aleksandra
2018.
Diffuse reflectance spectroscopy for field scale assessment of winter wheat yield.
Environmental Earth Sciences,
Vol. 77,
Issue. 13,
Mattila, Heta
Valev, Dimitar
Havurinne, Vesa
Khorobrykh, Sergey
Virtanen, Olli
Antinluoma, Mikko
Mishra, Kumud B
and
Tyystjärvi, Esa
2018.
Degradation of chlorophyll and synthesis of flavonols during autumn senescence—the story told by individual leaves.
AoB PLANTS,
Vol. 10,
Issue. 3,
Delloye, Cindy
Weiss, Marie
and
Defourny, Pierre
2018.
Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems.
Remote Sensing of Environment,
Vol. 216,
Issue. ,
p.
245.
Perea, Ramón
Fernandes, Geraldo Wilson
and
Dirzo, Rodolfo
2018.
Embryo size as a tolerance trait against seed predation: Contribution of embryo-damaged seeds to plant regeneration.
Perspectives in Plant Ecology, Evolution and Systematics,
Vol. 31,
Issue. ,
p.
7.
Stagnari, F.
Galieni, A.
D'Egidio, S.
Pagnani, G.
and
Pisante, M.
2018.
Responses of radish (Raphanus sativus) to drought stress.
Annals of Applied Biology,
Vol. 172,
Issue. 2,
p.
170.
Corti, Martina
Cavalli, Daniele
Cabassi, Giovanni
Marino Gallina, Pietro
and
Bechini, Luca
2018.
Does remote and proximal optical sensing successfully estimate maize variables? A review.
European Journal of Agronomy,
Vol. 99,
Issue. ,
p.
37.
Dong, Taifeng
Shang, Jiali
Chen, Jing M.
Liu, Jiangui
Qian, Budong
Ma, Baoluo
Morrison, Malcolm J.
Zhang, Chao
Liu, Yupeng
Shi, Yichao
Pan, Hui
and
Zhou, Guisheng
2019.
Assessment of Portable Chlorophyll Meters for Measuring Crop Leaf Chlorophyll Concentration.
Remote Sensing,
Vol. 11,
Issue. 22,
p.
2706.
D’Egidio, Sara
Galieni, Angelica
Stagnari, Fabio
Pagnani, Giancarlo
and
Pisante, Michele
2019.
Yield, Quality and Physiological Traits of Red Beet Under Different Magnesium Nutrition and Light Intensity Levels.
Agronomy,
Vol. 9,
Issue. 7,
p.
379.
Gabriel, Jose Luis
Quemada, Miguel
Alonso-Ayuso, María
Lizaso, Jon I.
and
Martín-Lammerding, Diana
2019.
Predicting N Status in Maize with Clip Sensors: Choosing Sensor, Leaf Sampling Point, and Timing.
Sensors,
Vol. 19,
Issue. 18,
p.
3881.
Giunta, F.
Pruneddu, G.
Zuddas, M.
and
Motzo, R.
2019.
Bread and durum wheat: Intra- and inter-specific variation in grain yield and protein concentration of modern Italian cultivars.
European Journal of Agronomy,
Vol. 105,
Issue. ,
p.
119.