Article contents
Biodegradability of mature grass cell walls in relation to chemical composition and rumen microbial activity
Published online by Cambridge University Press: 27 March 2009
Summary
Cell walls from mature stems of three tropical grass species (Digitaria decumbens (pangola), Setaria anceps (cv. Kazangula) and sugar cane), and temperate barley straw, were analysed for lignin, carbohydrate, and the maj or acyl groups ferulate, ρ-coumarate and acetate. Samples were incubated in nylon bags in the rumen of sheep in a 4 x 4 latin-square design, and rates of disappearance of cellulose, hemicellulose, xylose, arabinose, ferulate, ρ-coumarate and acetate were determined during 60 h incubation. Interspecies differences in cell-wall chemistry appeared largely in the variable degree of acylation with p-coumaric acid (1·0–3·3%) and acetate (0·5–3·6%), and the high glucose concentration in the hemicellulose from pangola (17%) and Setaria (9%). Barley had much lower concentrations of these components than the tropical species. After 24 h incubation, losses of cellulose and acyl groups were greatest from pangola, whereas hemicellulose and its major components xylose and arabinose were degraded to the greatest degree from barley straw. Setaria cell-wall components were generally more resistant to degradation than the other species. No relationship was found between the concentration of any cell-wall constituent and degradability measurements. Nor were changes in microbial population, indicated by measuring the accumulation of cystine on the fibres, related to the rate or degree of degradation of any of the measured cell-wall constituents. Lignin was fractionated with alkali into insoluble and soluble fractions. The latter (25–50% of original lignin) gave high interspecies correlations with the degradability of total hemicellulose and its component monosaccharides. It was concluded that variability in the biodegradability of the cell walls was more likely due to in situ structural features, such as cross-linking between polymers, than to the concentration of any particular cell-wall constituent.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1987
References
- 39
- Cited by