Article contents
Sickle Cell Anaemia, Genetic Variations, and the Slave Trade to the United States
Published online by Cambridge University Press: 22 January 2009
Extract
Examination of the DNA of individuals with sickle cell anaemia who reside in various geographical areas in Africa has led to the conclusion that the gene for this genetic disease arose separately in three different locations. Similar studies of sickle cell anaemia patients in the United States provide considerable information about the frequency in the United States of these three genetic variations. On the basis of such data, it is possible to estimate the percentage of slave imports from a given African locale into the United States. When this is done, there is general concordance with previous conclusions from such sources as language studies, shipping data, etc.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1990
References
1 Pauling, L., Itano, H. A., Singer, S. J., and Wells, I. C., ‘Sickle cell anemia, a molecular disease’, Science, 110 (1949), 543–8.CrossRefGoogle ScholarPubMed
2 Konotey-Ahulu, F. I. D., ‘Effect of environment on sickle cell disease in West Africa: Epidemiologic and clinical considerations’, in Abramson, H., Bertles, J. F., and Wethers, D. L. (eds.), Sickle Cell Disease: Diagnosis, Management, Education, and Research (St. Louis, 1973), 20–38.Google Scholar
3 Ingram, V. M., ‘A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobins’, Nature (London), 178 (1956), 792–4.Google Scholar
4 Shelton, J. R. and Schroeder, W. A., ‘Further N-terminal sequences in human hemoglobins A, S, and F by Edman's phenylthiohydantoin method’, Journal of the American Chemical Society, 82 (1960), 3342–5.CrossRefGoogle Scholar
5 Nagel, R. L., ‘The origin of the hemoglobin S gene: Clinical, genetic and anthropological consequences’, Einstein Quarterly Journal of Biology and Medicine, 2 (1984).Google Scholar
6 Antonarakis, S. E., Boehm, C. D., Serjeant, G. R., Theisen, C. E., Dover, G. J., and Kazazian, H. H. Jr, ‘Origin of the βs-globin gene in Blacks: The contribution of recurrent mutation or gene conversion or both’, Proceedings of the National Academy of Sciences (USA), 81 (1984), 853–6.CrossRefGoogle ScholarPubMed
7 Pagnier, J., Mears, J. G., Dunda-Belkhodja, O., Schaefer-Rego, K. E., Beldjord, C., Nagel, R. L., and Labie, D., ‘Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa’, Proceedings of the National Academy of Sciences (USA), 81 (1984), 1770–3.CrossRefGoogle ScholarPubMed
8 Nagel, R. L., Fabry, M. E., Pagnier, J., Zohoun, J., Wajcman, H., Baudin, V., and Labie, D., ‘Hematologically and genetically distinct forms of sickle cell anemia in Africa’, New England Journal of Medicine, 312 (1985), 880–4CrossRefGoogle ScholarPubMed; Nagel, R. L., Rao, S. K., Dunda-Belkhodja, O., Connelly, M. M., Fabry, M. E., Georges, A., Krishnamoorthy, R., and Labie, D., ‘ The hematologic characteristics of sickle cell anemia bearing the Bantu haplotype: The relationship between Gγ and Hb F level’, Blood, 69 (1987), 1026–30.Google Scholar
9 Ojvvang, P. J., Ogada, T., Beris, P., Hattori, Y., Lanclos, K. D., Kutlar, A., Kutlar, F., and Huisman, T. H. J., ‘Haplotypes and α globin gene analyses in sickle cell anaemia patients from Kenya’, British Journal of Haematology, 65 (1987), 211–15.Google Scholar
10 Jonxis, J. H. P. and Delafresnaye, J. P. (eds.), Abnormal Haemoglobins: A Symposium (Springfield, IL, 1959)Google Scholar; Allison, A.C., ‘Genetic factors in resistance to malaria’, Annals of the New York Academy of Sciences, 91 (1961), 710CrossRefGoogle ScholarPubMed; Livingstone, F. B., Abnormal Hemoglobins in Human Populations (Chicago, 1967)Google Scholar; Song, J., Pathology of Sickle Cell Disease (Springfield, IL, 1971)Google Scholar; Erhardt, C. L., ‘Worldwide distribution of sickle cell disease: A consideration of available frequency data’, in Abramson, H., Bertles, J. F., and Wethers, D. L. (eds.), Sickle Cell Disease: Diagnosis, Management, Education, and Research, (St. Louis, 1973), 13–19.Google Scholar
11 Livingstone, Abnormal Hemoglobins in Human Populations.
12 Konotey-Ahulu, ‘Effect of environment on sickle cell disease in West Africa’.
13 Erhardt, ‘Worldwide distribution of sickle cell disease’.
14 Bodner, W. F. and Cavalli-Sforza, L. L., Genetics, Evolution, and Man (San Francisco, 1976).Google Scholar
15 D. R. Povvars, personal communication.
16 Schneider, R. G., Haggard, M. E., Gustavson, L. P., Brimhall, B., and Jones, R. T., ‘Genetic haemoglobin abnormalities in about 9000 Black and 7000 White newborns: Haemoglobin F Dickinson (A 97 His→Arg), a new variant’, British Journal of Haematology, 28 (1974), 515–23CrossRefGoogle Scholar; Schneider, R. G., Hightower, B., Hosty, T. S., Ryder, H., Tomlin, G., Atkins, R., Brimhall, B., and Jones, R.T., ‘Abnormal hemoglobins in a quarter million people’, Blood, 48 (1976), 629–37.Google Scholar
17 Curtin, P. D., The Atlantic Slave Trade: A Census (Madison, 1969).Google Scholar
18 Curtin, P. D., personal communication; Richardson, D., ‘Slave exports from West and West-Central Africa, 1700–1810: New estimates of volume and distribution’, J. Afr. Hist., 30 (1989), 1–22.Google Scholar
19 Curtin, , Census, 88.Google Scholar
20 Curtin, , Census, 144, 150.Google Scholar
21 Lovejoy, P. E., ‘The volume of the Atlantic slave trade: A synthesis’, J. Afr. Hist., 23 (1982), 473–501CrossRefGoogle Scholar; idem, ‘The impact of the Atlantic slave trade on Africa: A review of the literature’, J. Afr. Hist., 30 (1989), 365–94; Richardson, ‘Slave exports’. See also Geggus, D., ‘Sex ratio and ethnicity: A reply to Paul E. Lovejoy’, J. Afr. Hist., 30 (1989), 395–7.CrossRefGoogle Scholar
22 Richardson, , ‘Slave exports’, 2.Google Scholar
23 Nagel, ‘Origin of the hemoglobin S gene’.
24 Antonarakis et al., ‘Origin of the βs-globin gene in Blacks’.
25 Povvars, D. R., Chan, L., and Schroeder, W. A., ‘The influence of fetal hemoglobin on the clinical expression of sickle cell anemia’, Annals of the New York Academy of Sciences, 565, (1989), 262–78.Google Scholar
26 Pagnier et al., ‘ Evidence for the multicentric origin of the sickle cell gene in Africa’.
27 Antonarakis et al., ‘Origin of the βs-globin gene in Blacks’.
28 Wainscoat et al., ‘Multiple origins of the sickle mutation’.
29 Nagel, ‘Origin of the hemoglobin S gene’.
30 Rogers, Z. R., Powars, D. R., Kinney, T. R., Williams, W. D., and Schroeder, W. A., ‘Non-Black patients with sickle cell disease have African βs-gene-cluster haplotypes’, Journal of the American Medical Association, 261 (1989), 2991–4.CrossRefGoogle Scholar
31 Aluoch, J. R., Kilinc, Y., Aksoy, M., Yuregir, G. T., Bakioglu, I., Kutlar, A., Kutlar, F., and Huisman, T. H. J., ‘Sickle cell anaemia among Eti-Turks: Haematological, clinical, and genetic observations’, British Journal of Haematology, 64 (1986), 45–55CrossRefGoogle ScholarPubMed; Aluoch, J. R., DeGeus, A., and Goudsmit, R., ‘Clinical and laboratory features of sickle cell anemia in the Netherlands’, Tropical and Geographical Medicine, 40 (1988), 7–12.Google ScholarPubMed
32 Aluoch et al., ‘Sickle cell anaemia among the Eti-Turks’.
33 Miller, B. A., Olivieri, N., Salamek, M., Ahmed, M., Antognetti, G., Huisman, T. H. J., Nathan, D. G., and Orkin, S. H., ‘Molecular analysis of the high-hemoglobin-F phenotype in Saudi Arabian sickle cell anemia’, New England Journal of Medicine, 316 (1987), 244–50.CrossRefGoogle ScholarPubMed
34 Powars et al., ‘Influence of fetal hemoglobin’.
35 Aluoch et al., ‘Sickle cell anaemia among Eti-Turks’, Aluoch et al., ‘Clinical and laboratory features of sickle cell anemia in the Netherlands’.
36 Kulozik, A. E., Kar, B. C., Satapathy, R. K., Serjeant, B. E., Serjeant, G. R., and Weatherall, D. J., ‘Fetal hemoglobin levels and βs globin haplotypes in an Indian population with sickle cell disease’, Blood, 69 (1987), 174–6.Google Scholar
- 13
- Cited by