Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T03:21:52.577Z Has data issue: false hasContentIssue false

Normal ageing and the brain

Published online by Cambridge University Press:  13 June 2014

CS Breathnach*
Affiliation:
Department of Human Anatomy and Physiology, University College Dublin, Earlsfort Terrace, Dublin 2, Ireland.

Abstract

Interest in the psychiatric aspects of old age predated the institution of geriatrics as a clinical discipline, but the systematic study of the ageing brain only began in the second half of this century when an ageing population presented a global numerical challenge to society. In the senescent cerebral cortex, though the number of neurons is not reduced, cell shrinkage results in synaptic impoverishment with consequent cognitive impairment. Recent advances in imaging techniques, combined with burgeoning knowledge of neurobiological structure and function, have increased our understanding of the ageing processes in the human brain and permit an optimistic approach in the application of the newer insights into neuropsychology and geriatric psychiatry.

Type
Perspective
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gompertz, B. On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies. Phil Trans Roy Soc Lond 1825; 2: 513.Google Scholar
2.Fries, JF, Crapo, LM. Vitality and aging. New York: Freeman, 1981.Google Scholar
3.Rauzier, G. Traite des maladies des vieillards. Paris: Bailliere, 1909.Google Scholar
4.Nascher, IL. The diseases of old age and their treatment, including physiological old age, home and institutional care, and medico-legal relations. Philadelphia: Blakiston, 1914.Google Scholar
5.Masoro, EJ. Biology of aging: facts, thoughts, and experimental approaches. Lab Invest 1991; 65; 500–10.Google ScholarPubMed
6.McGue, M, Vaupel, JW, Holm, N, Harvald, B. Longevity is moderately heritable in a sample of Danish twins born 1870–1880. J Gerontol 1993; 48: B237–44.CrossRefGoogle Scholar
7.Yu, C-E, Oshima, J, Fu, Y-H, Wijsman, EM, Hisama, F, et al.Positional cloning of the Werner's syndrome gene. Science 1996; 272: 258–62.CrossRefGoogle ScholarPubMed
8.Rubner, M. Das Problem der Lebensdauer und Seine Beziehungen zum Wachstum und Ernabrung. Munich: Oldenbourg, 1908.Google Scholar
9.Esser, K, Martin, GM eds. Molecular aspects of ageing (Dahlem Workshops Reports 56). Chichester: Wiley, 1995.Google Scholar
10.Hayakawa, M, Hattorik, K, Sugiyama, S, Ozawa, T. Age associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Comm 1992, 189: 979–85.CrossRefGoogle ScholarPubMed
11.Micocci, P, Macgarvey, U, Kaufman, AEet al.Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 1993; 34: 609–16.CrossRefGoogle Scholar
12.Shay, JW, Werbin, H. New evidence for the insertion of mitochondrial DNA int the human genome: significance for cancer and aging. Mutat Res 1992; 275: 227–35.CrossRefGoogle Scholar
13.Richter, C. Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett 1988; 241: 15.CrossRefGoogle ScholarPubMed
14.Ozawa, T. Genetic and functional changes in mitochondria associated with aging. Physiol Revs 1997; 77: 425–64.CrossRefGoogle ScholarPubMed
15.Rose, MR. Evolutionary biology of ageing. Oxford and New York: Oxford University Press, 1991.Google Scholar
16.Finch, CE. Longevity, senescence and the genome. Chicago: University of Chicago Press, 1991.Google Scholar
17.Guarente, L. Aging – What makes us tick? Science 1997; 275: 943–4.CrossRefGoogle ScholarPubMed
18.Robinson, RA. The evolution of geriatric psychiatry. Med Hist 1972; 16: 184–93.CrossRefGoogle ScholarPubMed
19.Esquirol, JED. Maladies mentales. Paris: Bailliere, 1838. Treatise on insanity. Trans. Hunt, EK. Philadelphia: Lea and Blanchard, 1844.Google Scholar
20.Roth, M. The natural history of mental disorders in old age. J Ment Sci 1955; 101: 281301.CrossRefGoogle Scholar
21.Jacqmin-Gadda, H, Fabrigoule, C, Commenges, D, Dartiques, J-F. A 5-year longitudinal study of the Mini-Mental State Examination in normal aging. Am J Epidem 1997; 145: 498506.CrossRefGoogle ScholarPubMed
22.McClean, GE, Johannsen, B, Berg, S, Pedersen, NLet al.Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 1997; 276: 1560–63.Google Scholar
23.Brody, H. Organisation of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol 1955; 102:511–56.CrossRefGoogle Scholar
24.Tomlinson, WH, Blessed, G, Roth, M. Observations on the brains of nondemented old people. J Neurol Sci 1968; 7: 311–56.CrossRefGoogle ScholarPubMed
25.Anderson, JM, Hubbard, BM, Coghill, GR, Slidders, W. The effect of advanced old age on the neuron content of the cerebral cortex: observations with an automatic image analyser point count method. J Neurol Sci 1983; 58: 235–46.CrossRefGoogle Scholar
26.Haug, H, Kuhl, S, Mecke, E, Sass, NL, Wasner, K. The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. J Hirnforsch 1984; 25: 353–74.Google ScholarPubMed
27.Terry, RD, DeTeresa, R, Hansen, LA. Neocortical cell counts in normal human adult aging. Ann Neurol 1987; 21: 530–9.CrossRefGoogle ScholarPubMed
28.Oorschot, DE. Are you using neuronal densities, synaptic densities or neurochemical densities as your definitive data? Prog Neurobiol 1994; 44: 233–47.CrossRefGoogle ScholarPubMed
29.Harrison, PJ. Advances in post mortem molecular neurochemistry and neuropathology: examples from schizophrenic research. Brit Med Bull 1996: 52: 527–38.CrossRefGoogle Scholar
30.Masliah, E, Mallory, M, Hansen, L, DeTeresa, R, Terry, RD. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 1993; 43: 192–7.CrossRefGoogle ScholarPubMed
31.Whelihan, WM, Lesher, EL. Neuropsychological changes in frontal functions with aging. Dev Neuropsychology 1985; 1: 371–80.CrossRefGoogle Scholar
32.Mittenberg, W, Siedenberg, M, O'Leary, DS, DiGiulio, DV. Changes in cerebral functioning associated with normal aging. J Clin Expt Neuropsychol 1989, 11: 918–32CrossRefGoogle ScholarPubMed
33.West, MJ, Coleman, PD, Flood, DG, Troncoso, JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet 1994; 344: 769–72.CrossRefGoogle ScholarPubMed
34.Obrist, WD. Electroencephalographic changes in normal aging and dementia. In: Hoffmeister, F, Muller, C eds. Brain function and old age. Berlin: Springer Verlag, 1979: 102–11.Google Scholar
35.Jernigan, TL, Archibald, SL, Berhow, MT, Sowell, ER, Foster, DS, Hesselink, JR. Cerebral structure on MRI, Part I. Localisation of age-related changes. Biolog Psychiatr 1991; 29: 5567.CrossRefGoogle ScholarPubMed
36.Gilman, S. Advances in neurology. New Engl J Med 1992; 326: 1608–16, 1671–6.CrossRefGoogle ScholarPubMed
37.Sawle, GV, Colebatch, JG, Shah, A, Brooks, DJ, Marsden, CD, Frackowiak, RSJ. Striatal function in normal aging: implications for Parkinson's disease. Ann Neurol 1990; 28: 799804.CrossRefGoogle ScholarPubMed
38.Rugg, MD, Fletcher, PC, Frith, CD, Frackowiak, RSJ, Dolan, RJ. Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval. Brain 1996; 119: 2073–83.CrossRefGoogle ScholarPubMed
39.Fischer, M, Sotak, CH, Minematsu, K, Li, L. New magnetic resonance techniques for evaluating cerebrovascular disease. Ann Neurol 1992: 115–22.CrossRefGoogle Scholar
40.Kauppinen, RA, Williams, SR, Busza, AL, van Bruggen, N. Applications of magnetic resonance spectroscopy and diffusion-weighted imaging to the study of brain biochemistry and pathology. Trends in Neurosc 1993; 16: 8895.CrossRefGoogle Scholar
41.Bartko, J, Pulver, AE, Carpenter, WT Jr. The power of analysis; statistical perspectives. Psychiatr Res 1988; 23: 300–9.CrossRefGoogle ScholarPubMed
42.Buchsbaum, MS, Siegel, BV. Neuroimaging and the aging process in psychiatry. Intern Rev Psychiatry 1994; 6: 109–18.CrossRefGoogle Scholar
43.Friede, RL. The relation of the formation of lipofuscin to the distribution of oxidative enzymes in the human brain. Acta Neuropathol (Bed) 1962; 2: 113–25.CrossRefGoogle Scholar
44.Munn, DMA, Yates, PO, Stamp, JE. The relationship between lipofuscin pigment and aging in the human nervous system. J Neurol Sci 1978; 37: 8393.CrossRefGoogle Scholar
45.Landfield, PW, Waymire, JC, Lynch, G. Hippocampal aging and adrenocorticoids: quantitative correlations. Science 1978; 202: 581–4.CrossRefGoogle ScholarPubMed
46.O'Brien, JT. The ‘glucocorticoid cascade’ hypothesis in man. Prolonged stress may cause brain damage. Brit J Psychiat 1997; 170: 199201.CrossRefGoogle Scholar
47.Casolini, P, Kabbaj, M, Piazza, PV, Angelucci, L. The Dl dopamine receptor antagonist SKF38393, but not the D2 agonist LY171555, decreases the affinity of type II corticosteroid receptors in rat hippocampus and ventral striatum. Neuroscience 1994; 60: 939–43.CrossRefGoogle Scholar
48.Casolini, P, Piaza, PV, Kabbaj, M, Leprat, F, Angelucci, L. The mesolimbic dopaminergic system exerts an inhibitory influence on brain corticosteroid affinities. Neuroscience 1993; 55: 429–34.CrossRefGoogle ScholarPubMed
49.McEwen, BS, Alves, SA, Bulloch, K, Welland, NC. Ovarian steroids and the brain: implications for cognition and aging. Neurology 1997; 48(5) Suppl S8–S15.CrossRefGoogle ScholarPubMed
50.Swaab, DF, Fliers, E, Partiman, TS. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 1985; 342: 3744.CrossRefGoogle ScholarPubMed
51.Swaab, DF. Brain aging and Alzheimer's disease, ‘wear and tear’ versus ‘use it or lose it’. Neurobiol Aging 1991; 12; 317–24, 352–5.CrossRefGoogle ScholarPubMed