Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T15:42:38.706Z Has data issue: false hasContentIssue false

Water Quality Improvement of a Reservoir Invaded by an Exotic Macrophyte

Published online by Cambridge University Press:  20 January 2017

Mariana Rodríguez
Affiliation:
Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 East Sherbrooke St., Montréal (QC) H1X 2B2, Canada
Jacques Brisson
Affiliation:
Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 East Sherbrooke St., Montréal (QC) H1X 2B2, Canada
Guillermo Rueda
Affiliation:
Universidad Jorge Tadeo Lozano, Carrera 4 N 22-61 Bogotá, Colombia
Manuel S. Rodríguez*
Affiliation:
Universidad de los Andes, Carrera 1 N 18A-12, Bogotá, Colombia
*
Corresponding author's E-mail: [email protected]

Abstract

The aim of this study was to evaluate the effect of the macrophyte waterhyacinth on the water quality of a reservoir in Colombia. Postinvasion water quality assessments were performed during three different hydrological periods and compared with preinvasion data. The results show that water quality has improved, especially in terms of transparency, showing an increase in Secchi disk values from 0.3 to 2 m (1 to 6.6 ft). The analysis strongly suggests that the improvement in water quality is due to the filtering and precipitation effects provided by waterhyacinth. This case highlights the dilemma of managing an invasive species that provides a beneficial ecological service while posing a high ecological risk.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Albright, T. P., Moorhouse, T. G., and McNabb, J. 2004. The rise and fall of water hyacinth in Lake Victoria and the Kagera River Basin, 1989–2001. J. Aquat. Plant Manag. 42:7384.Google Scholar
Bicudo, D. D., Fonseca, B. M., Bini, L. M., Crossetti, L. O., Bicudo, C. E. D., and Araujo-Jesus, T. 2007. Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshw. Biol. 52:11201133.Google Scholar
Brendonck, L., Maes, J., Rommens, W., et al. 2003. The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe), II: species diversity. Arch. Hydrobiol. 158:389405.Google Scholar
[CAR] Corporación Autonóma Regional de Cundinamarca. 2005. Resolución No.1188 del 8 de julio de 2005. Bogotá, Colombia CAR.Google Scholar
[CAR] Corporación Autonóma Regional de Cundinamarca. 2006. Acuerdo 43 del 2006. Bogotá, Colombia CAR.Google Scholar
[CAR] Corporación Autonóma Regional de Cundinamarca. 2008. Centro de Monitoreo Hidrológico y del Clima. http://www.car.gov.co/?idcategoria=12645. Accessed: April, August, and November 2008.Google Scholar
Cardenas, G. A. 1977. Estudio de la macrofauna bentonica en los embalses de Neusa, Sisga, Tominé y Muña. Bogotá, Colombia Universidad de los Andes.Google Scholar
Charudattan, R., Kelly-Begazo, C., Labrada, R., and Center, T. D., eds. 1995. Strategies for water hyacinth control: report of a Panel of Experts meeting. Fort Lauderdale, FL FAO. 21 p.Google Scholar
Colautti, R. I. and MacIsaac, H. J. 2004. A neutral terminology to define ‘invasive’ species. Divers. Distrib. 10:135141.Google Scholar
D'Antonio, C. and Meyerson, L. A. 2002. Exotic plant species as problems and solutions in restoration: a synthesis. Restor. Ecol. 10:703713.Google Scholar
Donabaum, K., Schagerl, M., and Dokulil, M. T. 1999. Integrated management to restore macrophyte domination. Hydrobiologia. 395/396:8797.Google Scholar
Fang, Y. Y., Yang, X. E., Chang, H. Q., Pu, P. M., Ding, X. F., and Rengel, Z. 2007. Phytoremediation of nitrogen-polluted water using water hyacinth. J. Plant Nutr. 30:17531765.Google Scholar
Fox, L. J., Struik, P. C., Appleton, B. L., and Rule, J. H. 2008. Nitrogen phytoremediation by water hyacinth (Eichhornia crassipes (Mart.) Solms). Water Air Soil Pollut. 194:199207.Google Scholar
Gopal, B. 2003. Perspectives on wetland science, application and policy. Hydrobiologia 490:110.Google Scholar
Gopal, B. and Si-Iarma, K. P. 1979. Aquatic weed control versus utilisation. Econ. Bot. 33:340346.Google Scholar
Gutiérrez, E. L., Ruiz, E. F., Uribe, E. G., and Martínez, J. M. 2001. Biomass and productivity of water hyacinth and their application in control programs. Pages 109 in Julien, M. H., Hill, M. P., Center, T. D., and Jianqing, D., eds. Biological and Integrated Control of Water Hyacinth, Eichhornia crassipes. Canberra, Australia Australian Centre for International Agricultural Research.Google Scholar
Henry-Silva, G. G., Camargo, A. F. M., and Pezzato, M. M. 2008. Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia 610:153160.Google Scholar
Hu, W., Salomonsen, J., Xu, F. L., and Pu, P. 1998. A model for the effects of water hyacinths on water quality in an experiment of physico-biological engineering in Lake Taihu, China. Ecol. Model 107:171188.Google Scholar
Jianqing, D., Ren, W., Weidong, F., and Guoliang, Z. 2001. Water hyacinth in China: its distribution, problems and control status. Pages 29 in Julien, M. H., Hill, M. P., Center, T. D., and Jianqing, D., eds. Biological and Integrated Control of Water Hyacinth, Eichhornia crassipes. Canberra, Australia Australian Centre for International Agricultural Research.Google Scholar
Lodge, D. M. and Shrader-Frechette, K. 2003. Nonindigenous species: ecological explanation, environmental ethics, and public policy. Conserv. Biol. 17:3137.Google Scholar
Malik, A. 2007. Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ. Int. 33:122138.Google Scholar
Márquez, G. E. and Guillot, G. M. 2001. Ecología y efecto ambiental de embalses: aproximación con casos colombianos. Medellín, Colombia Universidad Nacional de Colombia.Google Scholar
Martin, R. M. 1988. Aspectos limnológicos del embalse de Tominé. Bogotá, Colombia Universidad Nacional de Colombia.Google Scholar
Martinez, P. 2001. Caracterización de la productividad primaria fitoplanctonica en el embalse de Tominé. Bogotá, Colombia Universidad de los Andes.Google Scholar
Matthews, S. and Brandt, K. 2004. Africa invaded: the growing danger of invasive alien species. Cape Town, South Africa Global Invasive Species Programme.Google Scholar
McDonald, R. C. and Wolverton, B. C. 1980. Comparative study of wastewater lagoon with and without water hyacinth. Econ. Bot. 34:101110.Google Scholar
Meerhoff, M., Mazzeo, N., Moss, B., and Rodriguez-Gallego, L. 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquat. Ecol. 37:377391.Google Scholar
Moorhead, K. K. and Reddy, K. R. 1988. Oxygen transport through selected aquatic macrophytes. J. Environ. Qual. 17:138142.Google Scholar
Mora, G. 2000. Análisis ecológico de la cuenca de captación y del embalse de Tominé. Bogotá, Colombia Universidad Nacional de Colombia.Google Scholar
Penfound, W. T. and Earle, T. T. 1948. The biology of the water hyacinth. Ecol. Monogr. 18:4,447472.Google Scholar
Pinto-Coelho, R. M. and Greco, M. K. B. 1999. The contribution of water hyacinth (Eichhornia crassipes) and zooplankton to the internal cycling of phosphorus in the eutrophic Pampulha Reservoir, Brazil. Hydrobiologia 411:115127.Google Scholar
Rai, D. N. and Datta Mushi, J. 1978. The influence of thick floating vegetation (water hyacinth: Eichhornia crassipes) on the physicochemical environment of a freshwater wetland. Hydrobiologia 62:6569.Google Scholar
Ripley, B. S., Muller, E., Behenna, M., Whittington-Jones, G. M., and Hill, M. P. 2006. Biomass and photosynthetic productivity of water hyacinth (Eichhornia crassipes) as affected by nutrient supply and mirid (Eccritotarsus catarinensis) biocontrol. Biol. Control 39:392400.Google Scholar
Rodríguez-Gallego, L. R., Mazzeo, N., Gorga, J., et al. 2004. The effects of an artificial wetland dominated by free-floating plants on the restoration of a subtropical, hypertrophic lake. Lakes Reserv. Res. Manag. 9:203215.Google Scholar
Ruiz, A. G. 2007. Plantas de los humedales de Bogotá y valle del río Ubaté. Instituto de investigaciones de Recursos Biológicos Alexander van Humboldt. 129 p.Google Scholar
Sakai, A. K., Allendorf, F. W., Holt, J. S., et al. 2001. The population biology of invasive species. 2001. Annu. Rev. Ecol. Syst. 32:305332.Google Scholar
Sanchez, G. E. 1976. Estudio limnológico de los embalses de Muña, Neusa, Sisga y Tominé. Bogotá, Colombia Universidad de los Andes.Google Scholar
APHA/AWWA/WEF, . 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington, DC American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
Wang, Q., Cui, Y., and Dong, Y. 2002. Phytoremediation of polluted waters potentials and prospects of wetland plants. Acta Biotechnol. 22:199208.Google Scholar
Xie, Y., Wen, M. Z., Yu, D., and Li, Y. K. 2004. Growth and resource allocation of water hyacinth as affected by gradually increasing nutrient concentrations. Aquat. Bot. 79:257266.Google Scholar
Xie, Y. and Yu, D. 2003. The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes). Aquat. Bot. 75:311321.Google Scholar