Published online by Cambridge University Press: 20 January 2017
The expansion of populations of invasive species continues to compromise the ecological and economic integrity of our natural resources. The negative effects of invasive species on native biota are widely reported. However, less is known about how the duration (i.e., age of oldest invaders) and intensity (i.e., density and percent cover) of an invasion influences native plant diversity and abundance at the microsite scale. We examined the influence of density, percent cover, and age of Amur honeysuckle (a nonnative invasive shrub), and several environmental factors on native plant taxa at 12 mixed hardwood forests in Indiana, USA. Overall, study sites with the greatest taxonomic diversity (Shannon's Diversity; H′), richness (S), percent cover, and density of native vegetation also had the lowest percent cover of Amur honeysuckle in the upper vertical stratum (1.01 to 5 m). Based on linear mixed model analyses, percent cover of Amur honeysuckle in the upper vertical stratum was consistently and negatively correlated with H′, S, total percent cover, and woody seedling density of native taxa at the microsite scale (P < 0.05). Duration of Amur honeysuckle at the microsite scale was not significant when percent cover of Amur honeysuckle in the upper vertical stratum was included in models. However, duration of Amur honeysuckle invasion was significantly correlated with dependent variables and with upper-stratum honeysuckle cover, suggesting that older Amur honeysuckle in a microsite resulted in greater light competition from above for native understory plant species. Beyond increased cover and shading, our results do not provide evidence of duration-related effects from long-term dominance of honeysuckle in our sampled mixed hardwood forest sites.