Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T05:39:34.143Z Has data issue: false hasContentIssue false

Roadside as Invasion Pathway for Common Reed (Phragmites australis)

Published online by Cambridge University Press:  20 January 2017

Jacques Brisson*
Affiliation:
Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 East Sherbrooke St., Montréal (QC) H1X 2B2, Canada
Sylvie de Blois
Affiliation:
Department of Plant Science and McGill School of Environment, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue (QC) H9X 3V9, Canada
Claude Lavoie
Affiliation:
Centre de Recherche en Aménagement et Développement, Université Laval, Québec (QC) G1V 0A6, Canada
*
Corresponding author's E-mail: [email protected]

Abstract

The rapid progression of an invasive genotype of common reed along roads and other linear infrastructures in North America provides one of the most spectacular examples of the role of transportation corridors as invasion pathways. In this paper, we discuss ecological patterns and processes in roadside habitats important for understanding the invasion dynamics of common reed from coastal areas inland. Frequent disturbances in roadsides combined with potentially high levels of nutrients from adjacent land and stress conditions (from deicing salt and other pollutants) mimic the conditions unfortunately found more and more in natural wetlands. The novel contribution of roads is the creation of linear wetlands with an unprecedented level of connectivity. Genetic evidence shows that invasion inland coincides with the intensification of the road network. Time series analysis of remote sensing data reveals impressive rates of invasion of roadsides and other linear infrastructures, suggesting prime conditions for common reed in these novel habitats. Whereas reed dispersal along roads was thought to be largely due to rhizome transport, new evidence suggests a significant contribution of sexual reproduction and seedling establishment, likely enhanced by climate warming at northern latitudes. There is little evidence that other wetland plants can slow down vegetative expansion of common reed in roadside habitats, but plant cover could prevent seedling establishment and shading by shrubs and trees limit lateral clonal expansion. The fact that common reed possibly provides water treatment and other ecosystem services in roadsides must be carefully weighed against the threat to biodiversity in natural systems. All this begs for investigating urgently if, where, and how we should intervene without compromising the great value of wetlands of conservation interest intersected by roads.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ailstock, M., Norman, C., and Bushmann, P. 2001. Common reed Phragmites australis: control and effects upon biodiversity in freshwater nontidal wetlands. Restor. Ecol 9:4959.Google Scholar
Amsberry, L., Baker, M. A., Ewanchuk, P. J., and Bertness, M. D. 2000. Clonal integration and the expansion of Phragmites australis . Ecol. Appl 10:11101118.Google Scholar
Angold, P. G. 1997. The impact of a road upon adjacent heathland vegetation: effects on plant species composition. J. Appl. Ecol 34:409417.CrossRefGoogle Scholar
Arteaga, M. A., Delgado, J. D., Otto, R., Fernandez-Palacios, J. M., and Arevalo, J. R. 2009. How do alien plants distribute along roads on oceanic islands? A case study in Tenerife, Canary Islands. Biol. Invas 11:10711086.Google Scholar
Bart, D., Burdick, D., Chambers, R., and Hartman, J. M. 2006. Human facilitation of Phragmites australis invasions in tidal marshes: a review and synthesis. Wetl. Ecol. Manag 14:5365.CrossRefGoogle Scholar
Bart, D. and Hartman, J. M. 2000. Environmental determinants of Phragmites australis expansion in a New Jersey salt marsh: an experimental approach. Oikos 89:5969.CrossRefGoogle Scholar
Bart, D. and Hartman, J. M. 2003. The role of large rhizome dispersal and low salinity windows in the establishment of common reed, Phragmites australis, in salt marshes: new links to human activities. Estuaries 26:437444.Google Scholar
Bellavance, M-È and Brisson, J. 2010. Spatial dynamics and morphological plasticity of common reed (Phragmites australis) and cattails (Typha sp.) in freshwater marshes and roadside ditches. Aquat. Bot 93:129134.CrossRefGoogle Scholar
Belzile, F., Labbé, J., Leblanc, M-C., and Lavoie, C. 2010. Seeds strongly contribute to the spread of the invasive genotype of the common reed (Phragmites australis). Biol. Invasions 12:22432250.Google Scholar
Brisson, J. and Chazarenc, F. 2009. Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Sci. Total Environ 407:39233930.CrossRefGoogle ScholarPubMed
Brisson, J., Paradis, É, and Bellavance, M-È. 2008. New evidence of common reed (Phragmites australis) sexual reproduction in eastern Canada: a consequence of the recent global warming? Rhodora 110:225230.CrossRefGoogle Scholar
Burdick, D. M., Buchsbaum, R., and Holt, E. 2001. Variation in soil salinity associated with expansion of Phragmites australis in salt marshes. Environ. Exp. Bot 46:247261.Google Scholar
Cale, P. and Hobbs, R. J. 1991. Condition of roadside vegetation in relation to nutrient status. Pages 353362. In Saunders, D. A. and Hobbs, R. J. eds. 1991. Nature Conservation 2: The Role of Corridors. Chipping Norton, Australia Surrey.Google Scholar
Catling, P. M. and Carbyn, S. 2006. Recent invasion, current status and invasion pathway of European common reed, Phragmites australis subspecies australis, in the southern Ottawa district. Can. Field-Nat 120:307312.Google Scholar
Chambers, R. M., Havens, K. J., Killeen, S., and Berman, M. 2008. Common reed Phragmites australis occurrence and adjacent land use along estuarine shoreline in Chesapeake Bay. Wetlands 28:10971103.Google Scholar
Chambers, R. M., Meyerson, L. A., and Saltonstall, K. 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot 6:261273.Google Scholar
Christen, D. C. and Matlack, G. R. 2009. The habitat and conduit functions of roads in the spread of three invasive plant species. Biol. Invasions 11:453465.Google Scholar
Delisle, F., Lavoie, C., Jean, M., and Lachance, D. 2003. Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens. J. Biogeogr 30:10331042.Google Scholar
Derr, J. F. 2008. Common reed (Phragmites australis) response to mowing and herbicide application. Invasive Plant Sci. Manag 1:1216.Google Scholar
Farnsworth, E. J. and Meyerson, L. A. 2003. Comparative ecophysiology of four wetland plant species along a continuum of invasiveness. Wetlands 23:750762.Google Scholar
Findlay, C. S. and Bourdages, J. 2000. Response time of wetland biodiversity to road construction on adjacent lands. Conserv. Biol 14:8694.Google Scholar
Fournier, W., Hauber, D. P., and White, D. A. 1995. Evidence of infrequent sexual propagation of Phragmites australis throughout the Mississippi River delta. Amer. J. Bot 82:71. [Abstract].Google Scholar
Galatowitsch, S. M., Anderson, N. O., and Ascher, P. D. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19:733755.Google Scholar
Garnier, A., Pivard, S., and Lecomte, J. 2008. Measuring and modelling anthropogenic secondary seed dispersal along roadverges for feral oilseed rape. Basic Appl. Ecol 9:533541.CrossRefGoogle Scholar
Gelbard, J. L. and Belnap, J. 2003. Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv. Biol 17:420432.Google Scholar
Gervais, C., Trahan, R., Moreno, D., and Drolet, A. M. 1993. Phragmites australis in Quebec—geographic distribution, chromosome numbers and reproduction. Can. J. Bot 71:13861393.Google Scholar
Grant, E. H. C., Lowe, W. H., and Fagan, W. F. 2007. Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol. Lett 10:165175.Google Scholar
Greenberg, C. H., Crownover, S. H., and Gordon, D. R. 1997. Roadside soils: a corridor for invasion of xeric scrub by nonindigenous plants. Nat. Area. J 17:99109.Google Scholar
Harris, S. W. and Marshall, W. H. 1960. Experimental germination of seed and establishment of seedlings of Phragmites communis . Ecology 41:395.Google Scholar
Haslam, S. M. 1971. The development and establishment of young plants of Phragmites communis Trin. Ann. Bot 35:10591072.Google Scholar
Haslam, S. M. 1972. Biological flora of the British Isles. Phragmites communis Trin. J. Ecol 60:585610.Google Scholar
Haslam, S. M. 1975. The performance of Phragmites communis Trin. in relation to temperature. Ann. Bot 39:881886.Google Scholar
Havens, K. J., Berquist, H., and Priest, W. I. 2003. Common reed grass, Phragmites australis, expansion into constructed wetlands: are we mortgaging our wetland future? Estuar. Coast 26:15592723.Google Scholar
Hershner, C. and Havens, K. J. 2008. Managing invasive aquatic plants in a changing system: strategic consideration of ecosystem services. Conserv. Biol 22:544550.Google Scholar
Hershner, C. and Havens, K. J. 2009. Ecosystem services and management of invasive species in a changing system: response to Martin and Blossey. Conserv. Biol 23:497498.Google Scholar
Hodkinson, D. J. and Thompson, K. 1997. Plant dispersal: the role of man. J. Appl. Ecol 34:14841496.Google Scholar
Hudon, C., Gagnon, P., and Jean, M. 2005. Hydrological factors controlling the spread of common reed (Phragmites australis) in the St. Lawrence River (Québec, Canada). Écoscience 12:347–57.Google Scholar
Hughes, T. D., Butler, J. D., and Sanks, G. D. 1975. Salt tolerance and suitability of various grasses for saline roadsides. J. Environ. Qual 4:6568.Google Scholar
Hulme, P. E., Bacher, S., Kenis, M., Klotz, S., Kuhn, I., Minchin, D., Nentwig, W., Olenin, S., Panov, V., Pergl, J., Pysek, P., Roques, A., Sol, D., Solarz, W., and Vila, M. 2008. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J. Appl. Ecol 45:403414.Google Scholar
Jodoin, Y., Lavoie, C., Villeneuve, P., Theriault, M., Beaulieu, J., and Belzile, F. 2008. Highways as corridors and habitats for the invasive common reed Phragmites australis in Quebec, Canada. J. Appl. Ecol 45:459466.Google Scholar
Keddy, P. A., Gaudet, C., and Fraser, L. H. 2000. Effects of low and high nutrients on the competitive hierarchy of 26 shoreline plants. J. Ecol 88:413423.Google Scholar
Keller, B. 2000. Genetic variation among and within populations of Phragmites australis in the Charles River watershed. Aquat. Bot 66:195208.Google Scholar
Konisky, R. A. and Burdick, D. M. 2004. Effects of stressors on invasive and halophytic plants of New England salt marshes: a framework for predicting response to tidal restoration. Wetlands 24:434447.Google Scholar
Lathrop, R. G., Windham, L., and Montesano, P. 2003. Does Phragmites expansion alter the structure and function of marsh landscapes? Patterns and processes revisited. Estuaries 26:423435.Google Scholar
Lavoie, C. 2008. The common reed (Phragmites australis): a threat to Quebec's wetlands?. Québec, Canada: Report prepared for the Government of Quebec's Interministerial Committee on the Common Reed and for Ducks Unlimited Canada. 41 p.Google Scholar
Lelong, B., Lavoie, C., Jodoin, Y., and Belzile, F. 2007. Expansion pathways of the exotic common reed (Phragmites australis): a historical and genetic analysis. Divers. Distrib 13:430437.CrossRefGoogle Scholar
Lelong, B., Lavoie, C., and Thériault, M. 2009. Quels sont les facteurs qui facilitent l'implantation du roseau commun (Phragmites australis) le long des routes du sud du Québec? Écoscience 16:224237.Google Scholar
Lissner, J. and Schierup, H. H. 1997. Effects of salinity on the growth of Phragmites australis . Aquat. Bot 55:247260.Google Scholar
Lumis, G. P., Hofstra, G., and Hall, R. 1976. Roadside woody plant susceptibility to sodium and chloride accumulation during winter and spring. Can. J. Plant Sci 56:853859.Google Scholar
Maheu-Giroux, M. and de Blois, S. 2005. Mapping the invasive species Phragmites australis in linear wetland corridors. Aquat. Bot 83:310320.Google Scholar
Maheu-Giroux, M. and de Blois, S. 2007. Landscape ecology of Phragmites australis invasion in a network of linear wetlands. Landsc. Ecol 22:285301.Google Scholar
Mal, T. K. and Narine, L. 2004. The biology of Canadian weeds. 129. Phragmites australis (Cav.) Trin. ex Steud. Can. J. Plant Sci 84:365396.CrossRefGoogle Scholar
Martin, L. J. and Blossey, B. 2009. A framework for ecosystem services valuation. Conserv. Biol 23:494496.Google Scholar
Mauchant, A., Blanch, S., and Grillas, P. 2001. Effects of submergence on the growth of Phragmites australis seedlings. Aquat. Bot 69:147164.Google Scholar
McKee, J. and Richards, A. J. 1996. Variation in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate. New Phytol 133:233243.Google Scholar
McNabb, C. D. and Batterson, T. R. 1991. Occurrence of the common reed, Phragmites australis, along roadsides in lower Michigan. Mich. Academician 23:211220.Google Scholar
Meyerson, L. A., Saltonstall, K., Windham, L., Kiviat, E., and Findlay, S. 2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetl. Ecol. Manag 8:89103.Google Scholar
Meyerson, L. A., Viola, D. V., and Brown, R. N. 2010. Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol. Invasions 12:103111.Google Scholar
Minchinton, T. E. and Bertness, M. D. 2003. Disturbance-mediated competition and the spread of Phragmites australis in a coastal marsh. Ecol. Appl 13:14001416.Google Scholar
Moore, P. D. 1982. Coastal plants take to the road. Nature (Lond.) 297:537538.Google Scholar
Olson, A., Paul, J., and Freeland, J. R. 2009. Habitat preferences of cattail species and hybrids (Typha spp.) in eastern Canada. Aquat. Bot 91:6770.Google Scholar
Paradis, E. 2008. Effet de la salinité sur la compétition entre le roseau (Phragmites australis) et les quenouilles (Typha spp.). M.Sc. thesis. Montréal, Canada: Université de Montréal. Département de sciences biologiques. 103 p. +. ann p.Google Scholar
Pellegrin, D. and Hauber, D. 1999. Isozyme variation among populations of the clonal species, Phragmites australis (Cav.) Trin. ex Steudel. Aquat. Bot 63:241259.Google Scholar
Philipp, K. R. and Field, R. T. 2005. Phragmites australis expansion in Delaware Bay salt marshes. Ecol. Eng 25:275291.Google Scholar
Ravit, B., Ehrenfeld, J. G., Häggblom, M. M., and Bartels, M. 2007. The effects of drainage and nitrogen enrichment on Phragmites australis, spartina alterniflora, and their root-associated microbial communitie. Wetlands 27:915927.Google Scholar
Rice, D., Rooth, J., and Stevenson, J. C. 2000. Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands 20:280299.Google Scholar
Richards, C. L., Walls, R. L., Bailey, J. P., Parameswaran, R., George, T., and Pigliucci, M. 2008 Plasticity in salt tolerance traits allows for invasion of novel habitat by Japanese knotweed s. l. (Fallopia japonica and F. ×bohemica, Polygonaceae). Am. J. Bot 95:931942.Google Scholar
Richburg, J. A. 1999. Water chemistry, Phragmites invasion, and changing plant communities at Kampoosa Bog, Stockbridge, Massachusetts. M.S. Thesis. Amherst, MA: University of Massachusetts.Google Scholar
Rickey, M. A. and Anderson, R. C. 2004. Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata . J. Appl. Ecol 41:888896.Google Scholar
Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Nat. Acad. Sci. U. S. A. 99:24452449.Google Scholar
Saltonstall, K. and Stevenson, J. C. 2007. The effect of nutrients on seedling growth of native and introduced Phragmites australis . Aquat. Bot 86:331336.Google Scholar
Shih, J. G. and Finkelstein, S. A. 2008. Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records. Wetlands 28:116.Google Scholar
Silliman, B. R. and Bertness, M. D. 2004. Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv. Biol 18:14241434.Google Scholar
Small, E. and Catling, P. M. 2001. Poorly known economic plants of Canada—29. Common reed, Phragmites australis (Cav.) Trin. ex Steud. Can. Bot. Assoc. Bull 34:2126.Google Scholar
Szczepanska, W. and Szczepanski, A. 1982. Interactions between Phragmites australis (Cav.) Trin. ex Steud. and Typha latifolia . Ekologia Polska 30:165186.Google Scholar
Tanner, C. C. 1996. Plants for constructed wetland treatment systems—a comparison of the growth and nutrient uptake of eight emergent species. Ecol. Eng 7:5983.Google Scholar
Trombulak, S. C. and Frissell, C. A. 2000. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol 14:1830.Google Scholar
Tucker, G. C. 1990. The genera of Arundinoideae (Graminae) in the southeastern United States. J. Arnold Arbor 71:145177.Google Scholar
Vasquez, E. A., Glenn, E. P., Guntenspergen, G. R., Brown, J. J., and Nelson, S. G. 2006. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Am. J. Bot 93:17841790.Google Scholar
Von der Lippe, M. and Kowarik, I. 2007. Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv. Biol 21:986996.Google Scholar
Wace, N. 1977. Assessment of dispersal of plant species—the car-borne flora in Canberra. Proc. Ecol. Soc. Aust 10:167186.Google Scholar
Wang, Q., Wang, C. H., Zhao, B., Ma, Z. J., Luo, Y. Q., Chen, J. K., and Li, B. 2006. Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biol. Invasions 8:15471560.Google Scholar
Warren, R. S., Fell, P. E., Grimsby, J. L., Buck, E. L., Rilling, G. C., and Fertik, R. A. 2001. Rate, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries 24:90107.Google Scholar
Weis, J. S. and Weis, P. 2003. Is the invasion of the common reed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster? Mar. Pollut. Bull 46:816820.Google Scholar
Weisner, S. E. B. and Ekstam, B. 1993. Influence of germination time on juvenile performance of Phragmites australis on temporarily exposed bottoms—implications for the colonization of lake beds. Aquat. Bot 45:107118.Google Scholar
Wijte, A. H. and Gallagher, J. L. 1996. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. 2. Early seedling development advantage of Spartina alterniflora over Phragmites australis (Poaceae). Am. J. Bot 83:13431350.Google Scholar
Wilcox, D. A. 1986a. The effects of deicing salts on vegetation in Pinhook Bog, Indiana. Can. J. Bot 64:865874.Google Scholar
Wilcox, D. A. 1986b. Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors. Environ. Manag 13:365370.Google Scholar
Wilcox, K. L., Petrie, S. A., Maynard, L. A., and Meyer, S. W. 2003. Historical distribution and abundance of Phragmites australis at Long Point, Lake Erie, Ontario. J. Gt. Lakes Res 29:664680.Google Scholar
Yang, Q., Chen, Z. H., Zhao, J. G., and Gu, B. H. 2007. Contaminant removal of domestic wastewater by constructed wetlands: effects of plant species. J. Integr. Plant Biol 49:437446.Google Scholar
Zedler, J. B. and Kercher, S. 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit. Rev. Plant Sci 23:431452.Google Scholar
Zwaenepoel, A., Roovers, P., and Hermy, M. 2006. Motor vehicles as vectors of plant species from road verges in a suburban environment. Basic Appl. Ecol 7:8393.Google Scholar