Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T07:21:06.658Z Has data issue: false hasContentIssue false

Validation of the Chinese version of the memory binding test for distinguishing amnestic mild cognitive impairment from cognitively normal elderly individuals

Published online by Cambridge University Press:  29 October 2019

Xiao Wang
Affiliation:
Dementia Care & Research Center, Peking University Institute of Mental Health, Beijing, China Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, National Health Commission, Beijing, China Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
Tao Li
Affiliation:
Dementia Care & Research Center, Peking University Institute of Mental Health, Beijing, China Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, National Health Commission, Beijing, China
Haifeng Zhang
Affiliation:
Dementia Care & Research Center, Peking University Institute of Mental Health, Beijing, China Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, National Health Commission, Beijing, China
Tingting Sun
Affiliation:
Dementia Care & Research Center, Peking University Institute of Mental Health, Beijing, China Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, National Health Commission, Beijing, China
Lingchuan Xiong
Affiliation:
Dementia Care & Research Center, Peking University Institute of Mental Health, Beijing, China Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
Yunqiu Zhang
Affiliation:
Capital Normal University, Beijing, China
Zhiyu Sun
Affiliation:
Dementia Care & Research Center, Peking University Institute of Mental Health, Beijing, China Graduate School of Medicine, Wenzhou Medical University, Wenzhou, China
Xin Yu
Affiliation:
Dementia Care & Research Center, Peking University Institute of Mental Health, Beijing, China Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, National Health Commission, Beijing, China
Huali Wang*
Affiliation:
Dementia Care & Research Center, Peking University Institute of Mental Health, Beijing, China Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, National Health Commission, Beijing, China
*
Correspondence should be addressed to: Huali Wang, Peking University Institute of Mental Health, No. 51 Huayuanbei Road, Haidian District, Beijing 100191, China. Phone: +86-10-82801983. Email: [email protected].

Abstract

Background:

Episodic memory starts to decline very early in the development of Alzheimer’s disease (AD). Subtle impairments in memory binding may be detected in mild cognitive impairment (MCI). This study aims to examine the psychometric properties of the Chinese version of the memory binding test (MBT).

Methods:

One hundred and sixty-four subjects (26 individuals with AD, 67 individuals with amnestic MCI (aMCI), 30 individuals with subjective cognitive impairment (SCI), and 41 cognitively normal elderly individuals (NC)) participated in the study. Twenty-two subjects repeated the assessment of the MBT within 6 weeks (± 2 weeks). Pearson correlation was used to calculate the convergent validity. The test––retest reliability was determined by the calculation of the intraclass correlation coefficient (ICC). Discriminative validity was calculated to evaluate the receiver–operating characteristic curves. The optimal index was chosen by comparing the area under the curve for specificity and sensitivity ≥ 0.80. The optimal cutoff score of the index was chosen to maximize the sum of sensitivity and specificity.

Results:

The absolute value of the convergent validity of the direct indexes of MBT ranged from 0.443 to 0.684. The ICC for each of direct indexes was 0.887–0.958. Total delayed paired recall (TDPR) was the optimal index for discriminating aMCI from NC. The cutoff score for TDPR was ≤25 to distinguish aMCI from NC (sensitivity = 0.896, specificity = 0.707).

Conclusion:

The Chinese version of MBT is a valid and reliable instrument to detect MCI.

Type
Original Research Article
Copyright
© International Psychogeriatric Association 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Both the authors contributed equally to this work.

References

Ally, B. A., Hussey, E. P., Ko, P. C. and Molitor, R. J. (2013). Pattern separation and pattern completion in Alzheimer’s disease: Evidence of rapid forgetting in amnestic mild cognitive impairment. Hippocampus, 23, 12461258. doi: 10.1002/hipo.22162.CrossRefGoogle ScholarPubMed
Baddeley, A., Allen, R. and Vargha-Khadem, F. (2010). Is the hippocampus necessary for visual and verbal binding in working memory? Neuropsychologia, 48, 10891095. doi: 10.1016/j.neuropsychologia.2009.12.009.CrossRefGoogle ScholarPubMed
Bateman, R. J., et al. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine, 367, 795804. doi: 10.1056/NEJMoa1202753.CrossRefGoogle ScholarPubMed
Braak, H. and Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica, 82, 239259. doi: 10.1007/bf00308809.CrossRefGoogle Scholar
Braak, H. and Braak, E. (1997). Staging of Alzheimer-related cortical destruction. International Psychogeriatrics, 9(Suppl. 1), 257261; discussion 269–272. doi: 10.1017/S1041610297004973.CrossRefGoogle ScholarPubMed
Burke, W. J., et al. (1988). Reliability of the Washington University Clinical Dementia Rating. Archives of Neurology, 45, 3132. doi: 10.1001/archneur.1988.00520250037015.CrossRefGoogle ScholarPubMed
Buschke, H., et al. (2017). Memory binding test distinguishes amnestic mild cognitive impairment and dementia from cognitively normal elderly. Archives of Clinical Neuropsychology, 32, 2939. doi: 10.1093/arclin/acw083.CrossRefGoogle ScholarPubMed
Buschke, H., Sliwinski, M. J., Kuslansky, G. and Lipton, R. B. (1997). Diagnosis of early dementia by the Double Memory Test: Encoding specificity improves diagnostic sensitivity and specificity. Neurology, 48, 989997. doi: 10.1212/wnl.48.4.989.CrossRefGoogle ScholarPubMed
Dubois, B., et al. (2010). Revising the definition of Alzheimer’s disease: A new lexicon. The Lancet Neurology, 9, 11181127. doi: 10.1016/S1474-4422(10)70223-4.CrossRefGoogle ScholarPubMed
Dubois, B., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. The Lancet Neurology, 6, 734746. doi: 10.1016/S1474-4422(07)70178-3.CrossRefGoogle Scholar
Ebert, P. L. and Anderson, N. D. (2009). Proactive and retroactive interference in young adults, healthy older adults, and older adults with amnestic mild cognitive impairment. Journal of the International Neuropsychological Society, 15, 8393. doi: 10.1017/S1355617708090115.CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198. doi: 10.1016/0022-3956(75)90026-6.CrossRefGoogle ScholarPubMed
Gillis, M. M., Quinn, K. M., Phillips, P. A. and Hampstead, B. M. (2013). Impaired retention is responsible for temporal order memory deficits in mild cognitive impairment. Acta Psychologica, 143, 8895. doi: 10.1016/j.actpsy.2013.03.001.CrossRefGoogle ScholarPubMed
Gold, C. A. and Budson, A. E. (2008). Memory loss in Alzheimer’s disease: Implications for development of therapeutics. Expert Review of Neurotherapeutics, 8, 18791891. doi: 10.1586/14737175.8.12.1879.CrossRefGoogle ScholarPubMed
Gramunt, N., et al. (2015). Reference data of the Spanish memory binding test in a midlife population from the ALFA STUDY (Alzheimer’s and Family). Journal of Alzheimer’s Disease, 48, 613625. doi: 10.3233/JAD-150237.CrossRefGoogle Scholar
Hampel, H. and Lista, S. (2016). Dementia: The rising global tide of cognitive impairment. Nature Reviews Neurology, 12, 131132. doi: 10.1038/nrneurol.2015.250.CrossRefGoogle ScholarPubMed
Hanseeuw, B. J., Seron, X. and Ivanoiu, A. (2010). Increased sensitivity to proactive interference in amnestic mild cognitive impairment is independent of associative and semantic impairment. Brain and Cognition, 72, 325331. doi: 10.1016/j.bandc.2009.10.004.CrossRefGoogle ScholarPubMed
Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A. and Martin, R. L. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140, 566572. doi: 10.1192/bjp.140.6.566.CrossRefGoogle Scholar
Jack, C. R. Jr., et al. (2013). Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12, 207216. doi: 10.1016/S1474-4422(12)70291-0.CrossRefGoogle ScholarPubMed
Jessen, F., et al. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s & Dementia, 10, 844852. doi: 10.1016/j.jalz.2014.01.001.CrossRefGoogle ScholarPubMed
Konkel, A., Warren, D. E., Duff, M. C., Tranel, D. N. and Cohen, N. J. (2008). Hippocampal amnesia impairs all manner of relational memory. Frontiers in Human Neuroscience, 2, 15. doi: 10.3389/neuro.09.015.2008.CrossRefGoogle ScholarPubMed
Koppara, A., et al. (2015). Feature binding deficits in subjective cognitive decline and in mild cognitive impairment. Journal of Alzheimer’s Disease, 48(Suppl. 1), S161170. doi: 10.3233/JAD-150105.CrossRefGoogle Scholar
Li, G., et al. (1988). The study of simple and easy screening Dementia—testing of MMSE in population of urban elderly (Chinese). Chinese Mental Health Journal, 2(1), 1318.Google Scholar
Liang, Y., et al. (2016). Visual short-term memory binding deficit in familial Alzheimer’s disease. Cortex, 78, 150164. doi: 10.1016/j.cortex.2016.01.015.CrossRefGoogle ScholarPubMed
Loewenstein, D. A., Acevedo, A., Agron, J. and Duara, R. (2007a). Stability of neurocognitive impairment in different subtypes of mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 23, 8286. doi: 10.1159/000097304.CrossRefGoogle ScholarPubMed
Loewenstein, D. A., Acevedo, A., Agron, J. and Duara, R. (2007b). Vulnerability to proactive semantic interference and progression to dementia among older adults with mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 24, 363368. doi: 10.1159/000109151.CrossRefGoogle ScholarPubMed
Loewenstein, D. A., Acevedo, A., Luis, C., Crum, T., Barker, W. W. and Duara, R. (2004). Semantic interference deficits and the detection of mild Alzheimer’s disease and mild cognitive impairment without dementia. Journal of the International Neuropsychological Society, 10, 91100. doi: 10.1017/S1355617704101112.CrossRefGoogle ScholarPubMed
Loewenstein, D. A., Curiel, R. E., Duara, R. and Buschke, H. (2018). novel cognitive paradigms for the detection of memory impairment in preclinical Alzheimer’s disease. Assessment, 25, 348359. doi: 10.1177/1073191117691608.CrossRefGoogle ScholarPubMed
Loewenstein, D. A., et al. (2016). A novel cognitive stress test for the detection of preclinical Alzheimer disease: Discriminative properties and relation to Amyloid load. The American Journal of Geriatric Psychiatry, 24, 804813. doi: 10.1016/j.jagp.2016.02.056.CrossRefGoogle ScholarPubMed
Logroscino, G., et al. (2018). Global, regional, and national burden of motor neuron diseases 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 17, 10831097. doi: 10.1016/S1474-4422(18)30404-6.CrossRefGoogle Scholar
Mayes, A., Montaldi, D. and Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11, 126135. doi: 10.1016/j.tics.2006.12.003.CrossRefGoogle ScholarPubMed
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D. and Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34, 939944. doi: 10.1212/wnl.34.7.939.CrossRefGoogle ScholarPubMed
Meiser, T., Sattler, C. and Weisser, K. (2008). Binding of multidimensional context information as a distinctive characteristic of remember judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 3249. doi: 10.1037/0278-7393.34.1.32.Google ScholarPubMed
Migo, E. M., et al. (2015). Alterations in working memory networks in amnestic mild cognitive impairment. Aging, Neuropsychology, and Cognition, 22, 106127. doi: 10.1080/13825585.2014.894958.CrossRefGoogle ScholarPubMed
Morris, J. C. (1997). Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(Suppl. 1), 173176; discussion 177-178. doi: 10.1017/S1041610297004870.CrossRefGoogle ScholarPubMed
Moses, S. N. and Ryan, J. D. (2006). A comparison and evaluation of the predictions of relational and conjunctive accounts of hippocampal function. Hippocampus, 16, 4365. doi: 10.1002/hipo.20131.CrossRefGoogle ScholarPubMed
Mowrey, W. B., et al. (2016). Memory binding test predicts incident amnestic mild cognitive impairment. Journal of Alzheimer’s Disease, 53, 15851595. doi: 10.3233/JAD-160291.CrossRefGoogle ScholarPubMed
Nasreddine, Z. S., et al. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695699. doi: 10.1111/j.1532-5415.2005.53221.x.CrossRefGoogle ScholarPubMed
Ozer, S., Young, J., Champ, C. and Burke, M. (2016). A systematic review of the diagnostic test accuracy of brief cognitive tests to detect amnestic mild cognitive impairment. International Journal of Geriatric Psychiatry, 31, 11391150. doi: 10.1002/gps.4444.CrossRefGoogle ScholarPubMed
Papp, K. V., et al. (2015). Free and cued memory in relation to biomarker-defined abnormalities in clinically normal older adults and those at risk for Alzheimer’s disease. Neuropsychologia, 73, 169175. doi: 10.1016/j.neuropsychologia.2015.04.034.CrossRefGoogle ScholarPubMed
Parra, M. A., Fabi, K., Luzzi, S., Cubelli, R., Hernandez Valdez, M. and Della Sala, S. (2015). Relational and conjunctive binding functions dissociate in short-term memory. Neurocase, 21, 5666. doi: 10.1080/13554794.2013.860177.CrossRefGoogle ScholarPubMed
Pertzov, Y., et al. (2013). Binding deficits in memory following medial temporal lobe damage in patients with voltage-gated potassium channel complex antibody-associated limbic encephalitis. Brain, 136, 24742485. doi: 10.1093/brain/awt129.CrossRefGoogle ScholarPubMed
Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194. doi: 10.1111/j.1365-2796.2004.01388.x.CrossRefGoogle ScholarPubMed
Petersen, R. C., et al. (2001). Current concepts in mild cognitive impairment. JAMA Neurology, 58, 19851992. doi: 10.1001/archneur.58.12.1985.Google ScholarPubMed
Rentz, D. M., et al. (2011). Face-name associative memory performance is related to amyloid burden in normal elderly. Neuropsychologia, 49, 27762783. doi: 10.1016/j.neuropsychologia.2011.06.006.CrossRefGoogle ScholarPubMed
Rentz, D. M., et al. (2010). Cognition, reserve, and amyloid deposition in normal aging. Annals of Neurology, 67, 353364. doi: 10.1002/ana.21904.Google ScholarPubMed
Rentz, D. M., Parra Rodriguez, M. A., Amariglio, R., Stern, Y., Sperling, R. and Ferris, S. (2013). Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer’s disease: A selective review. Alzheimer’s Research & Therapy, 5, 58. doi: 10.1186/alzrt222.CrossRefGoogle ScholarPubMed
Roman, F., Iturry, M., Rojas, G., Barcelo, E., Buschke, H. and Allegri, R. F. (2016). Validation of the Argentine version of the Memory Binding Test (MBT) for Early Detection of Mild Cognitive Impairment. Dementia e Neuropsychologia, 10, 217226. doi: 10.1590/S1980-5764-2016DN1003008.CrossRefGoogle ScholarPubMed
Royall, D. R., Palmer, R., Chiodo, L. K. and Polk, M. J. (2005). Normal rates of cognitive change in successful aging: the freedom house study. Journal of the International Neuropsychological Society, 11, 899909. doi: 10.1017/S135561770505109X.CrossRefGoogle ScholarPubMed
Salmon, D. P. and Bondi, M. W. (2009). Neuropsychological assessment of dementia. Annual Review of Psychology, 60, 257282. doi: 10.1146/annurev.psych.57.102904.190024.CrossRefGoogle ScholarPubMed
Snowden, J. S., et al. (2007). Cognitive phenotypes in Alzheimer’s disease and genetic risk. Cortex, 43, 835845. doi: 10.1016/s0010-9452(08)70683-x.CrossRefGoogle ScholarPubMed
Sperduti, M., Armougum, A., Makowski, D., Blonde, P. and Piolino, P. (2017). Interaction between attentional systems and episodic memory encoding: The impact of conflict on binding of information. Experimental Brain Research, 235, 35533560. doi: 10.1007/s00221-017-5081-6.CrossRefGoogle Scholar
Staresina, B. P. and Davachi, L. (2008). Selective and shared contributions of the hippocampus and perirhinal cortex to episodic item and associative encoding. Journal of Cognitive Neuroscience, 20, 14781489. doi: 10.1162/jocn.2008.20104.CrossRefGoogle ScholarPubMed
Stopford, C. L., Thompson, J. C., Neary, D., Richardson, A. M. and Snowden, J. S. (2012). Working memory, attention, and executive function in Alzheimer’s disease and frontotemporal dementia. Cortex, 48, 429446. doi: 10.1016/j.cortex.2010.12.002.CrossRefGoogle ScholarPubMed
Tsoi, K. K. F., et al. (2017). Recall tests are effective to detect mild cognitive impairment: A systematic review and meta-analysis of 108 diagnostic studies. Journal of the American Medical Directors Association, 18, 807.e17807.e29. doi: 10.1016/j.jamda.2017.05.016.CrossRefGoogle ScholarPubMed
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 125. doi: 10.1146/annurev.psych.53.100901.135114.CrossRefGoogle Scholar
Villemagne, V. L., et al. (2013). Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. The Lancet Neurology, 12, 357367. doi: 10.1016/S1474-4422(13)70044-9.CrossRefGoogle ScholarPubMed
Wadley, V. G., Okonkwo, O., Crowe, M., Ross-Meadows, L. A. (2008). Mild cognitive impairment and everyday function: Evidence of reduced speed in performing instrumental activities of daily living. American Journal of Geriatric Psychiatry, 16, 416424. doi: 10.1097/JGP.0b013e31816b7303.CrossRefGoogle ScholarPubMed
World Health Organization (1999). International Classification of Diseases, 10th Revision (ICD-10). Geneva: World Health Organization.Google Scholar
Zhao, M., et al. (2016). Delayed help seeking behavior in dementia care: Preliminary findings from the Clinical Pathway for Alzheimer’s Disease in China (CPAD) study. International Psychogeriatrics, 28, 211219. doi: 10.1017/S1041610215000940.CrossRefGoogle ScholarPubMed
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material

Download Wang et al. supplementary material(File)
File 331.3 KB