Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T04:37:15.108Z Has data issue: false hasContentIssue false

Relationship between cortisol level and prevalent/incident cognitive impairment and its moderating factors in older adults

Published online by Cambridge University Press:  23 October 2012

Olivier Potvin*
Affiliation:
Faculté de médecine et des sciences sociales, Université de Sherbrooke, Sherbrooke, Canada Centre de recherche Hôpital Charles LeMoyne, Longueuil, Canada Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, Canada
Hélène Forget
Affiliation:
Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, Canada
Michel Préville
Affiliation:
Faculté de médecine et des sciences sociales, Université de Sherbrooke, Sherbrooke, Canada Centre de recherche Hôpital Charles LeMoyne, Longueuil, Canada
Djamal Berbiche
Affiliation:
Faculté de médecine et des sciences sociales, Université de Sherbrooke, Sherbrooke, Canada Centre de recherche Hôpital Charles LeMoyne, Longueuil, Canada
Yvon C. Chagnon
Affiliation:
Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, Canada École de psychologie, Université Laval, Québec, Canada
Carol Hudon
Affiliation:
Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, Canada École de psychologie, Université Laval, Québec, Canada
*
Correspondence should be addressed to: Olivier Potvin, Centre de recherche de l'Institut universitaire en santé mentale de Québec, 2601, de la Canardière, Québec G1J 2G3, Canada. Phone: +418-663-5000, ext. 6857; Fax: +418-663-5971. Email: [email protected].
Get access

Abstract

Background: The objectives of this study were to examine the factors modifying the relationship between cortisol level and prevalent/incident cognitive impairment in older adults and to verify whether these relationships were non-linear.

Methods: Data were collected from 1,226 individuals aged 65 and older by two in-home interviews separated by 12 months. Cortisol level was measured using saliva samples taken at the beginning of the baseline interview before cognitive, mental, and physical health evaluations. Prevalent and incident cognitive impairment were defined using the Mini-Mental State Examination scores according to normative data for age, education level, and sex.

Results: High morning cortisol level increased the risk of incident cognitive impairment in participants with anxiety or depressive episode while low cortisol level increased the risk in participants without anxiety or depressive episode. In high educated participants, but not in low educated participants, high morning cortisol level was associated with prevalent cognitive impairment and high afternoon cortisol level increased the risk of incident cognitive impairment. The results also suggested that lower morning cortisol values could increase the risk of incident cognitive impairment in individuals with few chronic diseases. A curvilinear relationship was observed between morning cortisol and the probability of incident cognitive impairment, but further analyses suggested that it was likely explained by anxiety and depressive episode.

Conclusions: These results suggest that cognitive impairment in older adults is linked to higher or lower cortisol level depending on characteristics such as anxiety, depressive episode, education level, and physical health.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision (DSM-IV-TR). Washington, DC: American Psychiatric Publishing, Inc.Google Scholar
American Society of Health System Pharmacist (2001). AHFS drug information. Bethesda, MD: American Society of Health-System Pharmacists.Google Scholar
Barnes, D. E., Alexopoulos, G. S., Lopez, O. L., Williamson, J. D. and Yaffe, K. (2006). Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Archives of General Psychiatry, 63, 273279.CrossRefGoogle ScholarPubMed
Beluche, I., Carriere, I., Ritchie, K. and Ancelin, M. L. (2010). A prospective study of diurnal cortisol and cognitive function in community-dwelling elderly people. Psychological Medicine, 40, 10391049.CrossRefGoogle ScholarPubMed
Bremmer, M. A., Deeg, D. J., Beekman, A. T., Penninx, B. W., Lips, P. and Hoogendijk, W. J. (2007). Major depression in late life is associated with both hypo- and hypercortisolemia. Biological Psychiatry, 62, 479486.CrossRefGoogle ScholarPubMed
Carlson, L. E. and Sherwin, B. B. (1999). Relationships among cortisol (CRT), dehydroepiandrosterone-sulfate (DHEAS), and memory in a longitudinal study of healthy elderly men and women. Neurobiology of Aging, 20, 315324.CrossRefGoogle Scholar
Chaudieu, I., Beluche, I., Norton, J., Boulenger, J. P., Ritchie, K. and Ancelin, M. L. (2008). Abnormal reactions to environmental stress in elderly persons with anxiety disorders: evidence from a population study of diurnal cortisol changes. Journal of Affective Disorders, 106, 307313.CrossRefGoogle ScholarPubMed
Cohen, S., Schwartz, J. E., Epel, E., Kirschbaum, C., Sidney, S. and Seeman, T. (2006). Socioeconomic status, race, and diurnal cortisol decline in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Psychosomatic Medicine, 68, 4150.CrossRefGoogle ScholarPubMed
Comijs, H. C., Dik, M. G., Aartsen, M. J., Deeg, D. J. and Jonker, C. (2005). The impact of change in cognitive functioning and cognitive decline on disability, well-being, and the use of healthcare services in older persons. Results of Longitudinal Aging Study Amsterdam. Dementia and Geriatric Cognitive Disorders, 19, 316323.CrossRefGoogle ScholarPubMed
Comijs, H. C., Gerritsen, L., Penninx, B. W., Bremmer, M. A., Deeg, D. J. and Geerlings, M. I. (2010). The association between serum cortisol and cognitive decline in older persons. American Journal of Geriatric Psychiatry, 18, 4250.CrossRefGoogle ScholarPubMed
Conrad, C. D., Jackson, J. L. and Wise, L. S. (2004). Chronic stress enhances ibotenic acid-induced damage selectively within the hippocampal CA3 region of male, but not female rats. Neuroscience, 125, 759767.CrossRefGoogle Scholar
Csernansky, J. G.et al. (2006). Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. American Journal of Psychiatry, 163, 21642169.CrossRefGoogle ScholarPubMed
Erdman, H. P.et al. (1992). A comparison of two computer-administered versions of the NIMH Diagnostic Interview Schedule. Journal of Psychiatric Research, 26, 8595.CrossRefGoogle ScholarPubMed
Frisoni, G. B., Bianchetti, A., Govoni, S., Trabucchi, M., Calabresi, L. and Franceschini, G. (1994). Association of apolipoprotein E E4 with vascular dementia. The Journal of the American Medical Association, 271, 1317.CrossRefGoogle ScholarPubMed
Gallacher, J.et al. (2009). Does anxiety affect risk of dementia? Findings from the Caerphilly Prospective Study. Psychosomatic Medicine, 71, 659666.CrossRefGoogle ScholarPubMed
Gerritsen, L., Comijs, H. C., Deeg, D. J., Penninx, B. W. and Geerlings, M. I. (2011). Salivary cortisol, APOE-epsilon4 allele and cognitive decline in a prospective study of older persons. Neurobiology of Aging, 32, 16151625.CrossRefGoogle Scholar
Greendale, G. A., Kritz-Silverstein, D., Seeman, T. and Barrett-Connor, E. (2000). Higher basal cortisol predicts verbal memory loss in postmenopausal women: Rancho Bernardo Study. Journal of the American Geriatrics Society, 48, 16551658.CrossRefGoogle ScholarPubMed
Hayden, K. M.et al. (2006). Vascular risk factors for incident Alzheimer disease and vascular dementia: the Cache County study. Alzheimer Disease and Associated Disorders, 20, 93100.CrossRefGoogle ScholarPubMed
Hébert, R., Bravo, G. and Girouard, D. (1992). Validation de l'Adaptation Française du Modified Mini-Mental State (3MS). Revue de Gériatrie, 17, 443450.Google Scholar
Hensel, A., Angermeyer, M. C. and Riedel-Heller, S. G. (2007). Measuring cognitive change in older adults: reliable change indices for the Mini-Mental State Examination. Journal of Neurology, Neurosurgery and Psychiatry, 78, 12981303.CrossRefGoogle ScholarPubMed
Herman, J. P., Ostrander, M. M., Mueller, N. K. and Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: hypothalamo–pituitary–adrenocortical axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29, 12011213.CrossRefGoogle ScholarPubMed
Hudon, C.et al. (2009). Normalisation du Mini-Mental State Examination (MMSE) chez les Quebecois francophones ages de 65 ans et plus et residant dans la communaute. Canadian Journal on Aging/La Revue canadienne du vieillissement, 28, 347357.CrossRefGoogle Scholar
Hunsaker, M. R., Mooy, G. G., Swift, J. S. and Kesner, R. P. (2007). Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing. Behavioral Neuroscience, 121, 742750.CrossRefGoogle ScholarPubMed
Karlamangla, A. S., Singer, B. H., Chodosh, J., McEwen, B. S. and Seeman, T. E. (2005). Urinary cortisol excretion as a predictor of incident cognitive impairment. Neurobiology of Aging, 26 (Suppl 1), 8084.CrossRefGoogle ScholarPubMed
Kubzansky, L. D., Berkman, L. F., Glass, T. A. and Seeman, T. E. (1998). Is educational attainment associated with shared determinants of health in the elderly? Findings from the MacArthur Studies of Successful Aging. Psychosomatic Medicine, 60, 578585.CrossRefGoogle ScholarPubMed
Kunz-Ebrecht, S. R., Kirschbaum, C. and Steptoe, A. (2004). Work stress, socioeconomic status and neuroendocrine activation over the working day. Social Science and Medicine, 58, 15231530.CrossRefGoogle ScholarPubMed
Lee, B. K.et al. (2007). Associations of salivary cortisol with cognitive function in the Baltimore memory study. Archives of General Psychiatry, 64, 810818.CrossRefGoogle ScholarPubMed
Lee, B. K.et al. (2008). Apolipoprotein e genotype, cortisol, and cognitive function in community-dwelling older adults. American Journal of Psychiatry, 165, 14561464.CrossRefGoogle ScholarPubMed
Li, G.et al. (2006). Salivary cortisol and memory function in human aging. Neurobiology of Aging, 27, 17051714.CrossRefGoogle ScholarPubMed
Li, G.et al. (2011). Temporal relationship between depression and dementia: findings from a large community-based 15-year follow-up study. Archives of General Psychiatry, 68, 970977.CrossRefGoogle ScholarPubMed
Lupien, S. J. and McEwen, B. S. (1997). The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Research. Brain Research Reviews, 24, 127.CrossRefGoogle ScholarPubMed
Lupien, S., Lecours, A. R., Lussier, I., Schwartz, G., Nair, N. P. and Meaney, M. J. (1994). Basal cortisol levels and cognitive deficits in human aging. Journal of Neuroscience, 14, 28932903.CrossRefGoogle ScholarPubMed
Lupien, S. J., Gillin, C. J. and Hauger, R. L. (1999). Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose–response study in humans. Behavioral Neuroscience, 113, 420430.CrossRefGoogle Scholar
Lupien, S. J., Wilkinson, C. W., Briere, S., Ng Ying Kin, N. M., Meaney, M. J. and Nair, N. P. (2002). Acute modulation of aged human memory by pharmacological manipulation of glucocorticoids. Journal of Clinical Endocrinology and Metabolism, 87, 37983807.CrossRefGoogle ScholarPubMed
Lupien, S. J., Buss, C., Schramek, T. E., Maheu, F. and Pruessner, J. (2005). Hormetic influence of glucocorticoids on human memory. Nonlinearity in Biology, Toxicology, Medicine, 3, 2356.CrossRefGoogle ScholarPubMed
Mantella, R. C.et al. (2008). Salivary cortisol is associated with diagnosis and severity of late-life generalized anxiety disorder. Psychoneuroendocrinology, 33, 773781.CrossRefGoogle ScholarPubMed
Palmer, K., Wang, H. X., Backman, L., Winblad, B. and Fratiglioni, L. (2002). Differential evolution of cognitive impairment in nondemented older persons: results from the Kungsholmen Project. American Journal of Psychiatry, 159, 436442.CrossRefGoogle ScholarPubMed
Park, C. R., Campbell, A. M., Woodson, J. C., Smith, T. P., Fleshner, M. and Diamond, D. M. (2006). Permissive influence of stress in the expression of a U-shaped relationship between serum corticosterone levels and spatial memory errors in rats. Dose-Response, 4, 5574.CrossRefGoogle ScholarPubMed
Peavy, G. M.et al. (2007). The effects of prolonged stress and APOE genotype on memory and cortisol in older adults. Biological Psychiatry, 62, 472478.CrossRefGoogle ScholarPubMed
Peavy, G. M.et al. (2009). Effects of chronic stress on memory decline in cognitively normal and mildly impaired older adults. American Journal of Psychiatry, 166, 13841391.CrossRefGoogle ScholarPubMed
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G. and Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303308.CrossRefGoogle ScholarPubMed
Poirier, J., Davignon, J., Bouthillier, D., Kogan, S., Bertrand, P. and Gauthier, S. (1993). Apolipoprotein E polymorphism and Alzheimer's disease. Lancet, 342, 697699.CrossRefGoogle ScholarPubMed
Potvin, O., Dore, F. Y. and Goulet, S. (2007). Contributions of the dorsal hippocampus and the dorsal subiculum to processing of idiothetic information and spatial memory. Neurobiology of Learning and Memory, 87, 669678.CrossRefGoogle ScholarPubMed
Potvin, O., Dore, F. Y. and Goulet, S. (2009). Lesions of the dorsal subiculum and the dorsal hippocampus impaired pattern separation in a task using distinct and overlapping visual stimuli. Neurobiology of Learning and Memory, 91, 287297.CrossRefGoogle Scholar
Potvin, O., Hudon, C., Grenier, S. and Préville, M. (2010). Non-essential symptoms of depression and cognitive impairment no dementia (CIND) in community-dwelling elders without dysphoria or anhedonia. International Psychogeriatrics, 22, 13441352.CrossRefGoogle ScholarPubMed
Potvin, O., Forget, H., Grenier, S., Preville, M. and Hudon, C. (2011). Anxiety, depression, and 1-year incident cognitive impairment in community-dwelling older adults. Journal of the American Geriatrics Society, 59, 14211428.CrossRefGoogle ScholarPubMed
Potvin, O.et al. (2012). Sleep quality and 1-year incident cognitive impairment in community-dwelling older adults. Sleep, 35, 491499.CrossRefGoogle ScholarPubMed
Préville, M.et al. (2008). The epidemiology of psychiatric disorders in Quebec's older adult population. Canadian Journal of Psychiatry, 53, 822832.CrossRefGoogle ScholarPubMed
Qiu, C., Backman, L., Winblad, B., Aguero-Torres, H. and Fratiglioni, L. (2001). The influence of education on clinically diagnosed dementia incidence and mortality data from the Kungsholmen Project. Archives of Neurology, 58, 20342039.CrossRefGoogle ScholarPubMed
Ritchie, K., Carriere, I., Ritchie, C. W., Berr, C., Artero, S. and Ancelin, M. L. (2010). Designing prevention programmes to reduce incidence of dementia: prospective cohort study of modifiable risk factors. British Medical Journal, 341, c3885.CrossRefGoogle ScholarPubMed
Robins, L. N., Helzer, J. E., Croughan, J. and Ratcliff, K. S. (1981). National Institute of Mental Health Diagnostic Interview Schedule. Its history, characteristics, and validity. Archives of General Psychiatry, 38, 381389.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (1985). A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. Journal of Neuroscience, 5, 12281232.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. and Donnelly, T. M. (1985). Vulnerability to stress-induced tumor growth increases with age in rats: role of glucocorticoids. Endocrinology, 117, 662666.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. and Pulsinelli, W. A. (1985). Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science, 229, 13971400.CrossRefGoogle ScholarPubMed
Seeman, T. E., McEwen, B. S., Singer, B. H., Albert, M. S. and Rowe, J. W. (1997). Increase in urinary cortisol excretion and memory declines: MacArthur studies of successful aging. Journal of Clinical Endocrinology and Metabolism, 82, 24582465.Google ScholarPubMed
Souza-Talarico, J. N., Chaves, E. C., Lupien, S. J., Nitrini, R. and Caramelli, P. (2010). Relationship between cortisol levels and memory performance may be modulated by the presence or absence of cognitive impairment: evidence from healthy elderly, mild cognitive impairment and Alzheimer's disease subjects. Journal of Alzheimer's disease, 19, 839848.CrossRefGoogle ScholarPubMed
Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195231.CrossRefGoogle ScholarPubMed
Statistics Canada (2006). 2006 Census of Population. Available at: http://www40.statcan.gc.ca/l01/cst01/demo15-eng.htm; last accessed 4 November 2009.Google Scholar
Steptoe, A.et al. (2003). Socioeconomic status and stress-related biological responses over the working day. Psychosomatic Medicine, 65, 461470.CrossRefGoogle ScholarPubMed
Vreeburg, S. A.et al. (2010). Salivary cortisol levels in persons with and without different anxiety disorders. Psychosomatic Medicine, 72, 340347.CrossRefGoogle ScholarPubMed
Wardenaar, K. J.et al. (2011). Dimensions of depression and anxiety and the hypothalamo–pituitary–adrenal axis. Biological Psychiatry, 69, 366373.CrossRefGoogle ScholarPubMed
Wittchen, H. U., Robins, L. N., Cottler, L. B., Sartorius, N., Burke, J. D. and Regier, D. (1991). Cross-cultural feasibility, reliability and sources of variance of the Composite International Diagnostic Interview (CIDI). The Multicentre WHO/ADAMHA Field Trials. British Journal of Psychiatry, 159, 645653, 658.CrossRefGoogle ScholarPubMed
Wolf, O. T., Schommer, N. C., Hellhammer, D. H., McEwen, B. S. and Kirschbaum, C. (2001). The relationship between stress induced cortisol levels and memory differs between men and women. Psychoneuroendocrinology, 26, 711720.CrossRefGoogle ScholarPubMed
Xu, W. L., Qiu, C. X., Wahlin, A., Winblad, B. and Fratiglioni, L. (2004). Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology, 63, 11811186.CrossRefGoogle Scholar