Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T06:40:19.077Z Has data issue: false hasContentIssue false

Increased serum levels of dehydroepiandrosterone (DHEA) and interleukin-6 (IL-6) in women with mild to moderate Alzheimer's disease

Published online by Cambridge University Press:  18 May 2011

Sigbritt Rasmuson*
Affiliation:
Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University Hospital, Umeå, Sweden
Birgitta Näsman
Affiliation:
Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University Hospital, Umeå, Sweden
Tommy Olsson
Affiliation:
Department of Public Health and Clinical Medicine, Medicine, Umeå University Hospital, Umeå, Sweden
*
Correspondence should be addressed to: Dr. Sigbritt Rasmuson, MD, PhD, Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University Hospital, SE-901 85 Umeå, Sweden. Phone: + 46–90-7858800; Fax: + 46- 90-130623. Email: [email protected].
Get access

Abstract

Background: It has been suggested that hypercortisolism contributes to the pathophysiology of Alzheimer's disease (AD), based on the fact that excess glucocorticoid exposure has potent adverse effects on the central nervous system. In contrast, dehydroepiandrosterone (DHEA) has been linked to a broad range of beneficial physiological effects including neuronal excitability and neuroprotection and even memory enhancing properties. Of note, proinflammatory cytokines are present in neuritic plaques (a hallmark of AD) and may regulate cortisol/DHEA release. In this exploratory study, we hypothesized that there is a flattened diurnal curve of cortisol and DHEA in mild to moderate AD, linked to increased cytokine levels.

Methods: Diurnal profiles of cortisol, adrenocorticotropic hormone (ACTH), and DHEA were studied in 15 patients with mild to moderate AD (7 men and 8 women, 75.6 ± 5.5 years) and 15 healthy elderly controls (7 men and 8 women, 73.3 ± 5.8 years, respectively). Interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and soluble TNF receptors were analyzed.

Results: Women with AD had significantly increased morning levels of ACTH, DHEA, and IL-6 compared to healthy elderly women. Cortisol levels were significantly increased in men with AD at 0300 h versus healthy elderly men, in spite of slightly decreased ACTH levels.

Conclusions: Our data suggest important sex differences in hypothalamic–pituitary–adrenal (HPA) axis regulation and steroid hormone clearance in patients with AD. Increased secretion of IL-6 may have a contributory role in this difference.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, H. et al. (2000). Inflammation and Alzheimer's disease. Neurobiology of Aging, 21, 383421. doi: 10.1016/S0197-4580(00)00124-X.CrossRefGoogle ScholarPubMed
Bornstein, S. R. and Chrousos, G. P. (1999). Clinical review 104: adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: neural and immune inputs. Journal of Clinical Endocrinology and Metabolism, 84, 17291736.CrossRefGoogle ScholarPubMed
Csernansky, J. G. et al. (2006). Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. American Journal of Psychiatry, 163, 21642169. doi: 10.1176/appi.ajp.163.12.2164.Google ScholarPubMed
Engelhart, M. J. et al. (2004). Inflammatory proteins in plasma and the risk of dementia: the rotterdam study. Archieves of Neurology, 61, 668672.CrossRefGoogle ScholarPubMed
Ferrari, E. et al. (2001). Age-related changes of the hypothalamic-pituitary-adrenal axis: pathophysiological correlates. European Journal of Endocrinology, 144, 319329.CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198. doi: 10.1016/0022-3956(75)90026-6.Google ScholarPubMed
Hartmann, A., Veldhuis, J. D., Deuschle, M., Standhardt, H. and Heuser, I. (1997). Twenty-four hour cortisol release profiles in patients with Alzheimer's and Parkinson's disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiology of Aging, 18, 285289. doi: 10.1016/S0197-4580(97)80309-0.CrossRefGoogle ScholarPubMed
Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A. and Martin, R. L. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140, 566572.CrossRefGoogle ScholarPubMed
Lupien, S. J. et al. (2005). Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology, 30, 225242. doi: 10.1016/j.psyneuen.2004.08.003.CrossRefGoogle ScholarPubMed
Mastorakos, G., Chrousos, G. P. and Weber, J. S. (1993). Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. Journal of Clinical Endocrinology and Metabolism, 77, 16901694. doi: 10.1210/jc.77.6.1690.Google ScholarPubMed
McGeer, E. G. and McGeer, P. L. (2003). Inflammatory processes in Alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 741749. doi: 10.1016/S0278-5846(03)00124-6.CrossRefGoogle ScholarPubMed
Montgomery, S. A. and Åsberg, M. (1979). A new depression scale designed to be sensitive to change. British Journal of Psychiatry, 134, 382389.CrossRefGoogle ScholarPubMed
Näsman, B. et al. (1991). Serum dehydroepiandrosterone sulfate in Alzheimer's disease and in multi-infarct dementia. Biological Psychiatry, 30, 684690.CrossRefGoogle ScholarPubMed
Näsman, B., Olsson, T., Viitanen, M. and Carlström, K. (1995). A subtle disturbance in the feedback regulation of the hypothalamic-pituitary-adrenal axis in the early phase of Alzheimer's disease. Psychoneuroendocrinology, 20, 211220. doi: 10.1016/0306-4530(94)00054-E.CrossRefGoogle ScholarPubMed
Näsman, B., Olsson, T., Fagerlund, M., Eriksson, S., Viitanen, M. and Carlström, K. (1996). Blunted adrenocorticotropin and increased adrenal steroid response to human corticotropin-releasing hormone in Alzheimer's disease. Biological Psychiatry, 39, 311318. doi: 10.1016/0006-3223(95)00173-5.Google ScholarPubMed
Naylor, J. C. et al. (2008). Cerebrospinal fluid dehydroepiandrosterone levels are correlated with brain dehydroepiandrosterone levels, elevated in Alzheimer's disease, and related to neuropathological disease stage. Journal of Clinical Endocrinology and Metabolism, 93, 31733178. doi: 10.1210/jc.2007-1229.Google ScholarPubMed
Otte, C., Hart, S., Neylan, T. C., Marmar, C. R., Yaffe, K. and Mohr, D. C. (2005). A meta-analysis of cortisol response to challenge in human aging: importance of gender. Psychoneuroendocrinology, 30, 8091. doi: 10.1016/j.psyneuen.2004.06.002.CrossRefGoogle ScholarPubMed
Pringle, A. K., Schmidt, W., Deans, J. K., Wulfert, E., Reymann, K. G. and Sundstrom, L. E. (2003). 7-Hydroxylated epiandrosterone (7-OH-EPIA) reduces ischaemia-induced neuronal damage both in vivo and in vitro. European Journal of Neuroscience, 18, 117124. doi: 10.1046/j.1460-9568.2003.02734.x.Google ScholarPubMed
Rasmuson, S., Näsman, B., Eriksson, S., Carlström, K. and Olsson, T. (1998). Adrenal responsivity in normal aging and mild to moderate Alzheimer's disease. Biological Psychiatry, 43, 401407. doi: 10.1016/S0006-3223(97)00283-7.Google ScholarPubMed
Rasmuson, S., Andrew, R., Näsman, B., Seckl, J. R., Walker, B. R. and Olsson, T. (2001). Increased glucocorticoid production and altered cortisol metabolism in women with mild to moderate Alzheimer's disease. Biological Psychiatry, 49, 547552. doi: 10.1016/S00063223(00)01015-5.CrossRefGoogle ScholarPubMed
Rasmuson, S., Näsman, B., Carlström, K. and Olsson, T. (2002). Increased levels of adrenocortical and gonadal hormones in mild to moderate Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 13, 7479. doi: 10.1159/000048637.CrossRefGoogle ScholarPubMed
Rose, K. A. et al. (1997). Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7alpha-hydroxy dehydroepiandrosterone and 7alpha-hydroxy pregnenolone. Proceedings of the National Academy of Sciences of the United States of America, 94, 49254930.Google ScholarPubMed
Seckl, J. R. and Olsson, T. (1995). Glucocorticoid hypersecretion and the age-impaired hippocampus: cause or effect? Journal of Endocrinology, 145, 201211.CrossRefGoogle ScholarPubMed
Späth-Schwalbe, E. et al. (1994). Interleukin-6 stimulates the hypothalamus-pituitary-adrenocortical axis in man. Journal of Clinical Endocrinology and Metabolism, 79, 12121214. doi:10.1210/jc.79.4.1212.Google ScholarPubMed
Swanwick, G. R. et al. (1998). Hypothalamic-pituitary-adrenal axis dysfunction in Alzheimer's disease: lack of association between longitudinal and cross-sectional findings. American Journal of Psychiatry, 155, 286289.CrossRefGoogle ScholarPubMed
Svec, F. and Lopez, , , A. (1989). Antiglucocorticoid actions of dehydroepiandrosterone and low concentrations in Alzheimer's disease. The Lancet, 2, 13351336.CrossRefGoogle ScholarPubMed
Tan, Z. S. et al. (2007). Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology, 68, 19021908. doi: 10.1212/01.wnl.0000263217.36439.da.CrossRefGoogle ScholarPubMed
Umegaki, H. et al. (2000). Plasma cortisol levels in elderly female subjects with Alzheimer's disease: a cross-sectional and longitudinal study. Brain Research, 881, 241243. doi: 10.1016/S0006-8993(00)02847-X.CrossRefGoogle ScholarPubMed
Yau, J. L. et al. (2003). Dehydroepiandrosterone 7-hydroxylase CYP7B: predominant expression in primate hippocampus and reduced expression in Alzheimer's disease. Neuroscience, 121, 307314. doi: 10.1016/S0306-4522(03)00438-X.Google ScholarPubMed
Yau, J. L., Noble, J., Graham, M. and Seckl, J. R. (2006). Central administration of a cytochrome P450-7B product 7 alpha-hydroxypregnenolone improves spatial memory retention in cognitively impaired aged rats. Journal of Neuroscience, 26, 1103411040. doi: 10.1523/JNEUROSCI.3189-06.2006.CrossRefGoogle ScholarPubMed